63 research outputs found

    Structure and expression pattern of Oct4 gene are conserved in vole Microtus rossiaemeridionalis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oct4 is a POU-domain transcriptional factor which is essential for maintaining pluripotency in several mammalian species. The mouse, human, and bovine <it>Oct4 </it>orthologs display a high conservation of nucleotide sequence and genomic organization.</p> <p>Results</p> <p>Here we report an isolation of a common vole (<it>Microtus rossiaemeridionalis) Oct4 </it>ortholog. Organization and exon-intron structure of vole <it>Oct4 </it>gene are similar to the gene organization in other mammalian species. It consists of five exons and a regulatory region including the minimal promoter, proximal and distal enhancers. Promoter and regulatory regions of the vole <it>Oct4 </it>gene also display a high similarity to the corresponding regions of <it>Oct4 </it>in other mammalian species, and are active during the transient transfection within luciferase reporter constructs into mouse P19 embryonic carcinoma cells and TG-2a embryonic stem cells. The vole <it>Oct4 </it>gene expression is detectable starting from the morula stage and until day 17 of embryonic development.</p> <p>Conclusion</p> <p>Genomic organization of this gene and its intron-exon structure in vole are identical to those in all previously studied species: it comprises five exons and the regulatory region containing several conserved elements. The activity of the <it>Oct4 </it>gene in vole, as well as in mouse, is confined only to pluripotent cells.</p

    Variability of Sequence Surrounding the Xist Gene in Rodents Suggests Taxon-Specific Regulation of X Chromosome Inactivation

    Get PDF
    One of the two X chromosomes in female mammalian cells is subject to inactivation (XCI) initiated by the Xist gene. In this study, we examined in rodents (voles and rat) the conservation of the microsatellite region DXPas34, the Tsix gene (antisense counterpart of Xist), and enhancer Xite that have been shown to flank Xist and regulate XCI in mouse. We have found that mouse regions of the Tsix gene major promoter and minisatellite repeat DXPas34 are conserved among rodents. We have also shown that in voles and rat the region homologous to the mouse Tsix major promoter, initiates antisense to Xist transcription and terminates around the Xist gene start site as is observed with mouse Tsix. A conservation of Tsix expression pattern in voles, rat and mice suggests a crucial role of the antisense transcription in regulation of Xist and XIC in rodents. Most surprisingly, we have found that voles lack the regions homologous to the regulatory element Xite, which is instead replaced with the Slc7a3 gene that is unassociated with the X-inactivation centre in any other eutherians studied. Furthermore, we have not identified any transcription that could have the same functions as murine Xite in voles. Overall, our data show that not all the functional elements surrounding Xist in mice are well conserved even within rodents, thereby suggesting that the regulation of XCI may be at least partially taxon-specific

    A Dual Origin of the Xist Gene from a Protein-Coding Gene and a Set of Transposable Elements

    Get PDF
    X-chromosome inactivation, which occurs in female eutherian mammals is controlled by a complex X-linked locus termed the X-inactivation center (XIC). Previously it was proposed that genes of the XIC evolved, at least in part, as a result of pseudogenization of protein-coding genes. In this study we show that the key XIC gene Xist, which displays fragmentary homology to a protein-coding gene Lnx3, emerged de novo in early eutherians by integration of mobile elements which gave rise to simple tandem repeats. The Xist gene promoter region and four out of ten exons found in eutherians retain homology to exons of the Lnx3 gene. The remaining six Xist exons including those with simple tandem repeats detectable in their structure have similarity to different transposable elements. Integration of mobile elements into Xist accompanies the overall evolution of the gene and presumably continues in contemporary eutherian species. Additionally we showed that the combination of remnants of protein-coding sequences and mobile elements is not unique to the Xist gene and is found in other XIC genes producing non-coding nuclear RNA

    FGF4 Independent Derivation of Trophoblast Stem Cells from the Common Vole

    Get PDF
    The derivation of stable multipotent trophoblast stem (TS) cell lines from preimplantation, and early postimplantation mouse embryos has been reported previously. FGF4, and its receptor FGFR2, have been identified as embryonic signaling factors responsible for the maintenance of the undifferentiated state of multipotent TS cells. Here we report the derivation of stable TS-like cell lines from the vole M. rossiaemeridionalis, in the absence of FGF4 and heparin. Vole TS-like cells are similar to murine TS cells with respect to their morphology, transcription factor gene expression and differentiation in vitro into derivatives of the trophectoderm lineage, and with respect to their ability to invade and erode host tissues, forming haemorrhagic tumours after subcutaneous injection into nude mice. Moreover, vole TS-like cells carry an inactive paternal X chromosome, indicating that they have undergone imprinted X inactivation, which is characteristic of the trophoblast lineage. Our results indicate that an alternative signaling pathway may be responsible for the establishment and stable proliferation of vole TS-like cells

    Genes flanking Xist in mouse and human are separated on the X chromosome in American marsupials

    Get PDF
    X inactivation, the transcriptional silencing of one of the two X chromosomes in female mammals, achieves dosage compensation of X-linked genes relative to XY males. In eutherian mammals X inactivation is regulated by the X-inactive specific transcript (Xist), a cis-acting non-coding RNA that triggers silencing of the chromosome from which it is transcribed. Marsupial mammals also undergo X inactivation but the mechanism is relatively poorly understood. We set out to analyse the X chromosome in Monodelphis domestica and Didelphis virginiana, focusing on characterizing the interval defined by the Chic1 and Slc16a2 genes that in eutherians flank the Xist locus. The synteny of this region is retained on chicken chromosome 4 where other loci belonging to the evolutionarily ancient stratum of the human X chromosome, the so-called X conserved region (XCR), are also located. We show that in both M. domestica and D. virginiana an evolutionary breakpoint has separated the Chic1 and Slc16a2 loci. Detailed analysis of opossum genomic sequences revealed linkage of Chic1 with the Lnx3 gene, recently proposed to be the evolutionary precursor of Xist, and Fip1, the evolutionary precursor of Tsx, a gene located immediately downstream of Xist in eutherians. We discuss these findings in relation to the evolution of Xist and X inactivation in mammals

    Structural architecture of the human long non-coding RNA, steroid receptor RNA activator

    Get PDF
    While functional roles of several long non-coding RNAs (lncRNAs) have been determined, the molecular mechanisms are not well understood. Here, we report the first experimentally derived secondary structure of a human lncRNA, the steroid receptor RNA activator (SRA), 0.87 kB in size. The SRA RNA is a non-coding RNA that coactivates several human sex hormone receptors and is strongly associated with breast cancer. Coding isoforms of SRA are also expressed to produce proteins, making the SRA gene a unique bifunctional system. Our experimental findings (SHAPE, in-line, DMS and RNase V1 probing) reveal that this lncRNA has a complex structural organization, consisting of four domains, with a variety of secondary structure elements. We examine the coevolution of the SRA gene at the RNA structure and protein structure levels using comparative sequence analysis across vertebrates. Rapid evolutionary stabilization of RNA structure, combined with frame-disrupting mutations in conserved regions, suggests that evolutionary pressure preserves the RNA structural core rather than its translational product. We perform similar experiments on alternatively spliced SRA isoforms to assess their structural features

    Negative Correlation between Expression Level and Evolutionary Rate of Long Intergenic Noncoding RNAs

    Get PDF
    Mammalian genomes contain numerous genes for long noncoding RNAs (lncRNAs). The functions of the lncRNAs remain largely unknown but their evolution appears to be constrained by purifying selection, albeit relatively weakly. To gain insights into the mode of evolution and the functional range of the lncRNA, they can be compared with much better characterized protein-coding genes. The evolutionary rate of the protein-coding genes shows a universal negative correlation with expression: highly expressed genes are on average more conserved during evolution than the genes with lower expression levels. This correlation was conceptualized in the misfolding-driven protein evolution hypothesis according to which misfolding is the principal cost incurred by protein expression. We sought to determine whether long intergenic ncRNAs (lincRNAs) follow the same evolutionary trend and indeed detected a moderate but statistically significant negative correlation between the evolutionary rate and expression level of human and mouse lincRNA genes. The magnitude of the correlation for the lincRNAs is similar to that for equal-sized sets of protein-coding genes with similar levels of sequence conservation. Additionally, the expression level of the lincRNAs is significantly and positively correlated with the predicted extent of lincRNA molecule folding (base-pairing), however, the contributions of evolutionary rates and folding to the expression level are independent. Thus, the anticorrelation between evolutionary rate and expression level appears to be a general feature of gene evolution that might be caused by similar deleterious effects of protein and RNA misfolding and/or other factors, for example, the number of interacting partners of the gene product

    Progress and prospects toward our understanding of the evolution of dosage compensation

    Get PDF
    In many eukaryotic organisms, gender is determined by a pair of heteromorphic sex chromosomes. Degeneration of the non-recombining Y chromosome is a general facet of sex chromosome evolution. Selective pressure to restore expression levels of X-linked genes relative to autosomes accompanies Y-chromosome degeneration, thus driving the evolution of dosage compensation mechanisms. This review focuses on evolutionary aspects of dosage compensation, in light of recent advances in comparative and functional genomics that have substantially increased our understanding of the molecular mechanisms of dosage compensation and how it evolved. We review processes involved in sex chromosome evolution, and discuss the dynamic interaction between Y degeneration and the acquisition of dosage compensation. We compare mechanisms of dosage compensation and the origin of dosage compensation genes between different taxa and comment on sex chromosomes that apparently lack compensation mechanisms. Finally, we discuss how dosage compensation systems can also influence the evolution of well-established sex chromosomes
    corecore