75 research outputs found
Identification of human pathogens isolated from blood using microarray hybridisation and signal pattern recognition
<p>Abstract</p> <p>Background</p> <p>Pathogen identification in clinical routine is based on the cultivation of microbes with subsequent morphological and physiological characterisation lasting at least 24 hours. However, early and accurate identification is a crucial requisite for fast and optimally targeted antimicrobial treatment. Molecular biology based techniques allow fast identification, however discrimination of very closely related species remains still difficult.</p> <p>Results</p> <p>A molecular approach is presented for the rapid identification of pathogens combining PCR amplification with microarray detection. The DNA chip comprises oligonucleotide capture probes for 25 different pathogens including Gram positive cocci, the most frequently encountered genera of <it>Enterobacteriaceae</it>, non-fermenter and clinical relevant <it>Candida </it>species. The observed detection limits varied from 10 cells (e.g. <it>E. coli</it>) to 10<sup>5 </sup>cells (<it>S. aureus</it>) per mL artificially spiked blood. Thus the current low sensitivity for some species still represents a barrier for clinical application. Successful discrimination of closely related species was achieved by a signal pattern recognition approach based on the k-nearest-neighbour method. A prototype software providing this statistical evaluation was developed, allowing correct identification in 100 % of the cases at the genus and in 96.7 % at the species level (n = 241).</p> <p>Conclusion</p> <p>The newly developed molecular assay can be carried out within 6 hours in a research laboratory from pathogen isolation to species identification. From our results we conclude that DNA microarrays can be a useful tool for rapid identification of closely related pathogens particularly when the protocols are adapted to the special clinical scenarios.</p
Analysis of the challenges in implementing guidelines to prevent the spread of multidrug-resistant gram-negatives in Europe
The main objective of the study was to investigate major differences among European countries in implementing infection prevention and control (IPC) measures and reasons for reduced compliance
Revisiting the personal protective equipment components of transmission-based precautions for the prevention of COVID-19 and other respiratory virus infections in healthcare
The COVID-19 pandemic highlighted some potential limitations of transmission-based precautions. The distinction between transmission through large droplets vs aerosols, which have been fundamental concepts guiding infection control measures, has been questioned, leading to considerable variation in expert recommendations on transmission-based precautions for COVID-19. Furthermore, the application of elements of contact precautions, such as the use of gloves and gowns, is based on low-quality and inconclusive evidence and may have unintended consequences, such as increased incidence of healthcare-associated infections and spread of multidrug-resistant organisms. These observations indicate a need for high-quality studies to address the knowledge gaps and a need to revisit the theoretical background regarding various modes of transmission and the definitions of terms related to transmission. Further, we should examine the implications these definitions have on the following components of transmission-based precautions: (i) respiratory protection, (ii) use of gloves and gowns for the prevention of respiratory virus infections, (iii) aerosol-generating procedures and (iv) universal masking in healthcare settings as a control measure especially during seasonal epidemics. Such a review would ensure that transmission-based precautions are consistent and rationally based on available evidence, which would facilitate decision-making, guidance development and training, as well as their application in practice.</p
Revisiting the personal protective equipment components of transmission-based precautions for the prevention of COVID-19 and other respiratory virus infections in healthcare
The COVID-19 pandemic highlighted some potential limitations of transmission-based precautions. The distinction between transmission through large droplets vs aerosols, which have been fundamental concepts guiding infection control measures, has been questioned, leading to considerable variation in expert recommendations on transmission-based precautions for COVID-19. Furthermore, the application of elements of contact precautions, such as the use of gloves and gowns, is based on low-quality and inconclusive evidence and may have unintended consequences, such as increased incidence of healthcare-associated infections and spread of multidrug-resistant organisms. These observations indicate a need for high-quality studies to address the knowledge gaps and a need to revisit the theoretical background regarding various modes of transmission and the definitions of terms related to transmission. Further, we should examine the implications these definitions have on the following components of transmission-based precautions: (i) respiratory protection, (ii) use of gloves and gowns for the prevention of respiratory virus infections, (iii) aerosol-generating procedures and (iv) universal masking in healthcare settings as a control measure especially during seasonal epidemics. Such a review would ensure that transmission-based precautions are consistent and rationally based on available evidence, which would facilitate decision-making, guidance development and training, as well as their application in practice
Ultraviolet disinfection robots to improve hospital cleaning: Real promise or just a gimmick?
The global COVID-19 pandemic due to the novel coronavirus SARS-CoV-2 has challenged the availability of traditional surface disinfectants. It has also stimulated the production of ultraviolet-disinfection robots by companies and institutions. These robots are increasingly advocated as a simple solution for the immediate disinfection of rooms and spaces of all surfaces in one process and as such they seem attractive to hospital management, also because of automation and apparent cost savings by reducing cleaning staff. Yet, there true potential in the hospital setting needs to be carefully evaluated. Presently, disinfection robots do not replace routine (manual) cleaning but may complement it. Further design adjustments of hospitals and devices are needed to overcome the issue of shadowing and free the movement of robots in the hospital environment. They might in the future provide validated, reproducible and documented disinfection processes. Further technical developments and clinical trials in a variety of hospitals are warranted to overcome the current limitations and to find ways to integrate this novel technology in to the hospitals of to-day and the future
PRAISE: providing a roadmap for automated infection surveillance in Europe
Introduction: Healthcare-associated infections (HAI) are among the most common adverse events of medical care. Surveillance of HAI is a key component of successful infection prevention programmes. Conventional surveillance - manual chart review - is resource intensive and limited by concerns regarding interrater reliability. This has led to the development and use of automated surveillance (AS). Many AS systems are the product of in-house development efforts and heterogeneous in their design and methods. With this roadmap, the PRAISE network aims to provide guidance on how to move AS from the research setting to large-scale implementation, and how to ensure the delivery of surveillance data that are uniform and useful for improvement of quality of care. Methods: The PRAISE network brings together 30 experts from ten European countries. This roadmap is based on the outcome of two workshops, teleconference meetings and review by an independent panel of international experts. Results: This roadmap focuses on the surveillance of HAI within networks of healthcare facilities for the purpose of comparison, prevention and quality improvement initiatives. The roadmap does the following: discusses the selection of surveillance targets, different organizational and methodologic approaches and their advantages, disadvantages and risks; defines key performance requirements of AS systems and suggestions for their design; provides guidance on successful implementation and maintenance; and discusses areas of future research and training requirements for the infection prevention and related disciplines. The roadmap is supported by accompanying documents regarding the governance and information technology aspects of implementing AS. Conclusions: Large-scale implementation of AS requires guidance and coordination within and across surveillance networks. Transitions to large-scale AS entail redevelopment of surveillance methods and their interpretation, intensive dialogue with stakeholders and the investment of considerable resources. This roadmap can be used to guide future steps towards implementation, including designing solutions for AS and practical guidance checklists
- …