16 research outputs found

    Bi-allelic genetic variants in the translational GTPases GTPBP1 and GTPBP2 cause a distinct identical neurodevelopmental syndrome

    Get PDF
    The homologous genes GTPBP1 and GTPBP2 encode GTP-binding proteins 1 and 2, which are involved in ribosomal homeostasis. Pathogenic variants in GTPBP2 were recently shown to be an ultra-rare cause of neurodegenerative or neurodevelopmental disorders (NDDs). Until now, no human phenotype has been linked to GTPBP1. Here, we describe individuals carrying bi-allelic GTPBP1 variants that display an identical phenotype with GTPBP2 and characterize the overall spectrum of GTP-binding protein (1/2)-related disorders. In this study, 20 individuals from 16 families with distinct NDDs and syndromic facial features were investigated by whole-exome (WES) or whole-genome (WGS) sequencing. To assess the functional impact of the identified genetic variants, semi-quantitative PCR, western blot, and ribosome profiling assays were performed in fibroblasts from affected individuals. We also investigated the effect of reducing expression of CG2017, an ortholog of human GTPBP1/2, in the fruit fly Drosophila melanogaster. Individuals with bi-allelic GTPBP1 or GTPBP2 variants presented with microcephaly, profound neurodevelopmental impairment, pathognomonic craniofacial features, and ectodermal defects. Abnormal vision and/or hearing, progressive spasticity, choreoathetoid movements, refractory epilepsy, and brain atrophy were part of the core phenotype of this syndrome. Cell line studies identified a loss-of-function (LoF) impact of the disease-associated variants but no significant abnormalities on ribosome profiling. Reduced expression of CG2017 isoforms was associated with locomotor impairment in Drosophila. In conclusion, bi-allelic GTPBP1 and GTPBP2 LoF variants cause an identical, distinct neurodevelopmental syndrome. Mutant CG2017 knockout flies display motor impairment, highlighting the conserved role for GTP-binding proteins in CNS development across species

    Actividad quorum sensing en microorganismos antárticos asociados a Deschampsia antárctica

    No full text
    Introducción y Objetivos: Deschampsia antárctica Desv. (Poaceae) es una planta angiosperma vascular nativa del continente antártico. Parte de esta flora sufre contaminación con hidrocarburos, lo que podría afectar las comunidades microbianas asociadas a la planta y sus mecanismos de señalización. Los sistemas de quorum sensing (QS) son mecanismos de regulación de la fisiología microbiana que dependen de la producción de moléculas señal, las cuales se acumulan a medida que aumenta la densidad poblacional. Si bien la comunidad bacteriana asociada a D. antárctica ha sido descripta con anterioridad, los sistemas de QS no fueron caracterizados. A su vez, la incidencia de hidrocarburos sobre los mismos es aún desconocida, por lo que ambos interrogantes se plantearon como objetivos del trabajo.Materiales y Métodos: Cinco agrupaciones de D. antárctica (tres de sitios prístinos y dos de sitios contaminados con gasoil antártico) se aislaron de las inmediaciones de la base antártica Carlini. Se trabajó con 20 individuos de cada agrupación, analizándose un total de 100 individuos. Los ejemplares se sembraron en medio de cultivo LB hasta el desarrollo de colonias. La actividad QS de los microorganismos se puso de manifiesto a través de bioensayos con Chromobacterium violaceum CV026 y VIR07. A partir del revelado, se realizó el aislamiento de microorganismos considerando las zonas que mostraban producción de violaceína. También se determinó pH, temperatura y concentración de hidrocarburos de los suelos.Resultados: La temperatura de los suelos osciló entre 5 y 11 ºC, el pH fue cercano a 7 en todas las muestras y la concentración de hidrocarburos fue nula en las zonas prístinas mientras que en suelos contaminados alcanzó valores de 1528±233 y 955,9±64 mg Kg-1, respectivamente. Con los biosensores, 36 individuos dieron resultados positivos, 28 de los cuales respondieron al revelado con CV026 y 8 con VIR07. Si bien 9 ejemplares sometidos a la presencia de gasoil antártico manifestaron zonas de coloración con CV026, las moléculas de cadena larga no pudieron detectarse con VIR07. El crecimiento microbiano asociado a sitios prístinos respondió al revelado con ambos biosensores, sin embargo se observó una menor incidencia para las moléculas de cadenas más largas. A partir de los bioensayos, se obtuvieron 42 aislamientos con actividad QS, de los cuales el 67% provino de la rizósfera.Fil: Bertini, Elisa Violeta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Leguina, Ana Carolina del V.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Castellanos, Lucia Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Mac Cormack, Walter Patricio. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; ArgentinaFil: Nieto Peñalver, Carlos Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaXV Congreso Argentino de Microbiología; V Congreso Argentino de Microbiología de Alimentos; V Congreso Latinoamericano de Microbiología de Medicamentos y Cosméticos y XIV Congreso Argentino de Microbiología GeneralBuenos AiresArgentinaAsociación Argentina de Microbiologí

    Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies

    No full text
    Phosphotidylinositol (PtdIns) signaling is tightly regulated both spatially and temporally by subcellularly localized PtdIns kinases and phosphatases that dynamically alter downstream signaling events(1). Joubert syndrome is characterized by a specific midbrain-hindbrain malformation ('molar tooth sign'), variably associated retinal dystrophy, nephronophthisis, liver fibrosis and polydactyly(2) and is included in the newly emerging group of 'ciliopathies'. In individuals with Joubert disease genetically linked to JBTS1, we identified mutations in the INPP5E gene, encoding inositol polyphosphate-5- phosphatase E, which hydrolyzes the 5-phosphate of PtdIns(3,4,5) P3 and PtdIns(4,5) P2. Mutations clustered in the phosphatase domain and impaired 5-phosphatase activity, resulting in altered cellular PtdIns ratios. INPP5E localized to cilia in major organs affected by Joubert syndrome, and mutations promoted premature destabilization of cilia in response to stimulation. These data link PtdIns signaling to the primary cilium, a cellular structure that is becoming increasingly recognized for its role in mediating cell signals and neuronal function

    Hypomorphic Recessive Variants in SUFU Impair the Sonic Hedgehog Pathway and Cause Joubert Syndrome with Cranio-facial and Skeletal Defects

    No full text
    The Sonic Hedgehog (SHH) pathway is a key signaling pathway orchestrating embryonic development, mainly of the CNS and limbs. In vertebrates, SHH signaling is mediated by the primary cilium, and genetic defects affecting either SHH pathway members or ciliary proteins cause a spectrum of developmental disorders. SUFU is the main negative regulator of the SHH pathway and is essential during development. Indeed, Sufu knock-out is lethal in mice, and recessive pathogenic variants of this gene have never been reported in humans. Through whole-exome sequencing in subjects with Joubert syndrome, we identified four children from two unrelated families carrying homozygous missense variants in SUFU. The children presented congenital ataxia and cerebellar vermis hypoplasia with elongated superior cerebellar peduncles (mild "molar tooth sign"), typical cranio-facial dysmorphisms (hypertelorism, depressed nasal bridge, frontal bossing), and postaxial polydactyly. Two siblings also showed polymicrogyria. Molecular dynamics simulation predicted random movements of the mutated residues, with loss of the native enveloping movement of the binding site around its ligand GLI3. Functional studies on cellular models and fibroblasts showed that both variants significantly reduced SUFU stability and its capacity to bind GLI3 and promote its cleavage into the repressor form GLI3R. In turn, this impaired SUFU-mediated repression of the SHH pathway, as shown by altered expression levels of several target genes. We demonstrate that germline hypomorphic variants of SUFU cause deregulation of SHH signaling, resulting in recessive developmental defects of the CNS and limbs which share features with both SHH-related disorders and ciliopathies

    Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies.

    Get PDF
    Phosphotidylinositol (PtdIns) signaling is tightly regulated both spatially and temporally by subcellularly localized PtdIns kinases and phosphatases that dynamically alter downstream signaling events. Joubert syndrome is characterized by a specific midbrain-hindbrain malformation ('molar tooth sign'), variably associated retinal dystrophy, nephronophthisis, liver fibrosis and polydactyly and is included in the newly emerging group of 'ciliopathies'. In individuals with Joubert disease genetically linked to JBTS1, we identified mutations in the INPP5E gene, encoding inositol polyphosphate-5-phosphatase E, which hydrolyzes the 5-phosphate of PtdIns(3,4,5)P3 and PtdIns(4,5)P2. Mutations clustered in the phosphatase domain and impaired 5-phosphatase activity, resulting in altered cellular PtdIns ratios. INPP5E localized to cilia in major organs affected by Joubert syndrome, and mutations promoted premature destabilization of cilia in response to stimulation. These data link PtdIns signaling to the primary cilium, a cellular structure that is becoming increasingly recognized for its role in mediating cell signals and neuronal function.Journal ArticleResearch Support, N.I.H. ExtramuralResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore