127 research outputs found

    REF1/Aly and the additional exon junction complex proteins are dispensable for nuclear mRNA export

    Get PDF
    The metazoan proteins UAP56, REF1, and NXF1 are thought to bind sequentially to mRNA to promote its export to the cytoplasm: UAP56 is thought to recruit REF1 to nascent mRNA; REF1 acts as an adaptor protein mediating the association of NXF1 with mRNA, whereas NXF1 translocates the mRNA across the nuclear pore complex. REF1 is a component of the exon–exon junction complex (EJC); thus, the EJC is thought to play a role in the export of spliced mRNA. NXF1 and UAP56 are essential for mRNA export. An essential role for metazoan REF1 or the additional EJC proteins in this process has not been established. Contrary to expectation, we show that REF1 and the additional components of the EJC are dispensable for export of bulk mRNA in Drosophila cells. Only when REF1 and RNPS1 are codepleted, or when all EJC proteins are simultaneously depleted is a partial nuclear accumulation of polyadenylated RNAs observed. Because a significant fraction of bulk mRNA is detected in the cytoplasm of cells depleted of all EJC proteins, we conclude that additional adaptor protein(s) mediate the interaction between NXF1 and cellular mRNAs in metazoa. Our results imply that the essential role of UAP56 in mRNA export is not restricted to the recruitment of REF1

    RNA Export

    Get PDF

    The PAM domain, a multi-protein complex-associated module with an all-alpha-helix fold

    Get PDF
    BACKGROUND: Multimeric protein complexes have a role in many cellular pathways and are highly interconnected with various other proteins. The characterization of their domain composition and organization provides useful information on the specific role of each region of their sequence. RESULTS: We identified a new module, the PAM domain (PCI/PINT associated module), present in single subunits of well characterized multiprotein complexes, like the regulatory lid of the 26S proteasome, the COP-9 signalosome and the Sac3-Thp1 complex. This module is an around 200 residue long domain with a predicted TPR-like all-alpha-helical fold. CONCLUSIONS: The occurrence of the PAM domain in specific subunits of multimeric protein complexes, together with the role of other all-alpha-helical folds in protein-protein interactions, suggest a function for this domain in mediating transient binding to diverse target proteins

    Two PABPC1-binding sites in GW182 proteins promote miRNA-mediated gene silencing

    Get PDF
    Previous studies have suggested that the mechanism of miRNA-mediated silencing may differ between human and Drosophila cells. Here, a direct comparison demonstrates that the mechanism is conserved and the GW182–PABP interaction is required for silencing in vivo

    The C-terminal α–α superhelix of Pat is required for mRNA decapping in metazoa

    Get PDF
    Pat proteins regulate the transition of mRNAs from a state that is translationally active to one that is repressed, committing targeted mRNAs to degradation. Pat proteins contain a conserved N-terminal sequence, a proline-rich region, a Mid domain and a C-terminal domain (Pat-C). We show that Pat-C is essential for the interaction with mRNA decapping factors (i.e. DCP2, EDC4 and LSm1–7), whereas the P-rich region and Mid domain have distinct functions in modulating these interactions. DCP2 and EDC4 binding is enhanced by the P-rich region and does not require LSm1–7. LSm1–7 binding is assisted by the Mid domain and is reduced by the P-rich region. Structural analysis revealed that Pat-C folds into an α–α superhelix, exposing conserved and basic residues on one side of the domain. This conserved and basic surface is required for RNA, DCP2, EDC4 and LSm1–7 binding. The multiplicity of interactions mediated by Pat-C suggests that certain of these interactions are mutually exclusive and, therefore, that Pat proteins switch decapping partners allowing transitions between sequential steps in the mRNA decapping pathway

    The RRM domain in GW182 proteins contributes to miRNA-mediated gene silencing

    Get PDF
    Proteins of the GW182 family interact with Argonaute proteins and are required for miRNA-mediated gene silencing. These proteins contain two structural domains, an ubiquitin-associated (UBA) domain and an RNA recognition motif (RRM), embedded in regions predicted to be unstructured. The structure of the RRM of Drosophila melanogaster GW182 reveals that this domain adopts an RRM fold, with an additional C-terminal α-helix. The helix lies on the β-sheet surface, generally used by these domains to bind RNA. This, together with the absence of aromatic residues in the conserved RNP1 and RNP2 motifs, and the lack of general affinity for RNA, suggests that the GW182 RRM does not bind RNA. The domain may rather engage in protein interactions through an unusual hydrophobic cleft exposed on the opposite face of the β-sheet. We further show that the GW182 RRM is dispensable for P-body localization and for interaction of GW182 with Argonaute-1 and miRNAs. Nevertheless, its deletion impairs the silencing activity of GW182 in a miRNA target-specific manner, indicating that this domain contributes to silencing. The conservation of structural and surface residues suggests that the RRM domain adopts a similar fold with a related function in insect and vertebrate GW182 family members

    Genome-Wide Identification of Alternative Splice Forms Down-Regulated by Nonsense-Mediated mRNA Decay in Drosophila

    Get PDF
    Alternative mRNA splicing adds a layer of regulation to the expression of thousands of genes in Drosophila melanogaster. Not all alternative splicing results in functional protein; it can also yield mRNA isoforms with premature stop codons that are degraded by the nonsense-mediated mRNA decay (NMD) pathway. This coupling of alternative splicing and NMD provides a mechanism for gene regulation that is highly conserved in mammals. NMD is also active in Drosophila, but its effect on the repertoire of alternative splice forms has been unknown, as has the mechanism by which it recognizes targets. Here, we have employed a custom splicing-sensitive microarray to globally measure the effect of alternative mRNA processing and NMD on Drosophila gene expression. We have developed a new algorithm to infer the expression change of each mRNA isoform of a gene based on the microarray measurements. This method is of general utility for interpreting splicing-sensitive microarrays and high-throughput sequence data. Using this approach, we have identified a high-confidence set of 45 genes where NMD has a differential effect on distinct alternative isoforms, including numerous RNA–binding and ribosomal proteins. Coupled alternative splicing and NMD decrease expression of these genes, which may in turn have a downstream effect on expression of other genes. The NMD–affected genes are enriched for roles in translation and mitosis, perhaps underlying the previously observed role of NMD factors in cell cycle progression. Our results have general implications for understanding the NMD mechanism in fly. Most notably, we found that the NMD–target mRNAs had significantly longer 3′ untranslated regions (UTRs) than the nontarget isoforms of the same genes, supporting a role for 3′ UTR length in the recognition of NMD targets in fly
    corecore