500 research outputs found
Full-field quantum correlations of spatially entangled photons
Spatially entangled twin photons allow the study of high-dimensional
entanglement, and the Laguerre-Gauss modes are the most commonly used basis to
discretize the single photon mode spaces. In this basis, to date only the
azimuthal degree of freedom has been investigated experimentally due to its
fundamental and experimental simplicity. We show that the full spatial
entanglement is indeed accessible experimentally, i.e., we have found
practicable radial detection modes with negligible cross correlations. This
allows us to demonstrate hybrid azimuthal -- radial quantum correlations in a
Hilbert space with more than 100 dimensions per photon.Comment: 6 page
Observation of Goos-H\"{a}nchen shifts in metallic reflection
We report the first observation of the Goos-Hnchen
shift of a light beam incident on a metal surface. This phenomenon is
particularly interesting because the Goos-Hnchen shift
for polarized light in metals is negative and much bigger than the positive
shift for polarized light. The experimental result for the measured shifts
as a function of the angle of incidence is in excellent agreement with
theoretical predictions. In an energy-flux interpretation, our measurement
shows the existence of a backward energy flow at the bare metal surface when
this is excited by a polarized beam of light.Comment: The parer was published on Optics Express. The new version is
modified according to the reviewers suggestion
Experimental demonstration of fractional orbital angular momentum entanglement of two photons
The singular nature of a non-integer spiral phase plate allows easy
manipulation of spatial degrees of freedom of photon states. Using two such
devices, we have observed very high dimensional (D > 3700) spatial entanglement
of twin photons generated by spontaneous parametric down-conversion.Comment: submitted to Phys. Rev. Let
Fiber transport of spatially entangled photons
Entanglement in the spatial degrees of freedom of photons is an interesting
resource for quantum information. For practical distribution of such entangled
photons it is desireable to use an optical fiber, which in this case has to
support multiple transverse modes. Here we report the use of a hollow-core
photonic crystal fiber to transport spatially entangled qubits.Comment: 4 pages, 4 figure
Bouncing surface plasmons
Employing an interferometric cavity ring-down technique we study the launching, propagation and reflection of surface plasmons on a smooth gold-air interface that is intersected by two parallel, subwavelength wide slits. Inside the low-finesse optical cavity defined by these slits the surface plasmon is observed to make multiple bounces. Our experimental data allow us to determine the surface-plasmon group velocity (vgroup = 2.7±0.3×10?8 m/s at l = 770 nm) and the reflection coefficient (R ? 0.04) of each of our slits for an incident surface plasmon. Moreover, we find that the phase jump upon reflection off a slit is equal to the scattering phase acquired when light is converted into a plasmon at one slit and back-converted to light at the other slit. This allows us to explain fine details in the transmission spectrum of our double slits
Shannon dimensionality of quantum channels and its application to photon entanglement
We introduce the concept of Shannon dimensionality D as a new way to quantify
bipartite entanglement as measured in an experiment. This is applied to
orbital-angular-momentum entanglement of two photons, using two state analyzers
composed of a rotatable angular-sector phase plate that is lens-coupled to a
single-mode fiber. We can deduce the value of D directly from the observed
two-photon coincidence fringe. In our experiment, D varies between 2 and 6,
depending on the experimental conditions. We predict how the Shannon
dimensionality evolves when the number of angular sectors imprinted in the
phase plate is increased and anticipate that D = 50 is experimentally within
reach.Comment: 4 pages, 3 figures, accepted for Physical Review Letter
- …