830 research outputs found

    Skeletal and cardiovascular consequences of a positive calcium balance during hemodialysis

    Get PDF
    Patients on hemodialysis are exposed to calcium via the dialysate at least three times a week. Changes in serum calcium vary according to calcium mass transfer during dialysis, which is dependent on the gradient between serum and dialysate calcium concentration (d[Ca]) and the skeleton turnover status that alters the ability of bone to incorporate calcium. Although underappreciated, the d[Ca] can potentially cause positive calcium balance that leads to systemic organ damage, including associations with mortality, myocardial dysfunction, hemodynamic tolerability, vascular calcification, and arrhythmias. The pathophysiology of these adverse effects includes serum calcium changes, parathyroid hormone suppression, and vascular calcification through indirect and direct effects. Some organs are more susceptible to alterations in calcium homeostasis. In this review, we discuss the existing data and potential mechanisms linking the d[Ca] to calcium balance with consequent dysfunction of the skeleton, myocardium, and arteries

    The Massive Progenitor of the Possible Type II-Linear Supernova 2009hd in Messier 66

    Get PDF
    We present observations of SN2009hd in the nearby galaxy M66. This SN is one of the closest to us in recent years but heavily obscured by dust, rendering it unusually faint in the optical, given its proximity. We find that the observed properties of SN2009hd support its classification as a possible Type II-L SN, a relatively rare subclass of CC-SNe. High-precision relative astrometry has been employed to attempt to identify a SN progenitor candidate, based on a pixel-by-pixel comparison between HST F555W and F814W images of the SN site prior to explosion and at late times. A progenitor candidate is identified in the F814W images only; this object is undetected in F555W. Significant uncertainty exists in the astrometry, such that we cannot definitively identify this object as the SN progenitor. Via insertion of artificial stars into the pre-SN HST images, we are able to constrain the progenitor's properties to those of a possible supergiant, with M(F555W)0>-7.6 mag and (V-I) 0>0.99 mag. The magnitude and color limits are consistent with a luminous RSG; however, they also allow for the possibility that the star could have been more yellow than red. From a comparison with theoretical massive-star evolutionary tracks, which include rotation and pulsationally enhanced mass loss, we can place a conservative upper limit on the initial mass for the progenitor of <20 M_sun. If the actual mass of the progenitor is near the upper range allowed by our derived mass limit, then it would be consistent with that for the identified progenitors of the SNII-L 2009kr and the high-luminosity SNII-P 2008cn. The progenitors of these three SNe may possibly bridge the gap between lower-mass RSG that explode as SNeII-P and LBV, or more extreme RSG, from which the more exotic SNeII-n may arise. Very late-time imaging of the SN2009hd site may provide us with more clues regarding the true nature of its progenitor.Comment: 19 pages, 9 figures, 3 tables, accepted for publication in Ap

    Explosion of a massive, He-rich star at z=0.16

    Get PDF
    We present spectroscopic and photometric data of the peculiar SN 2001gh, discovered by the 'Southern inTermediate Redshift ESO Supernova Search' (STRESS) at a redshift z=0.16. SN 2001gh has relatively high luminosity at maximum (M_B = -18.55 mag), while the light curve shows a broad peak. An early-time spectrum shows an almost featureless, blue continuum with a few weak and shallow P-Cygni lines that we attribute to HeI. HeI lines remain the only spectral features visible in a subsequent spectrum, obtained one month later. A remarkable property of SN 2001gh is the lack of significant spectral evolution over the temporal window of nearly one month separating the two spectra. In order to explain the properties of SN 2001gh, three powering mechanism are explored, including radioactive decays of a moderately large amount of 56Ni, magnetar spin-down, and interaction of SN ejecta with circumstellar medium. We favour the latter scenario, with a SN Ib wrapped in a dense, circumstellar shell. The fact that no models provide an excellent fit with observations, confirms the troublesome interpretation of the nature of SN 2001gh. A rate estimate for SN 2001gh-like event is also provided, confirming the intrinsic rarity of these objects.Comment: 11 pages, 8 figures, 3 tables. Accepted by MNRA

    Late-time emission of type Ia supernovae: optical and near-infrared observations of SN 2001el

    Full text link
    We present optical and near-infrared light curves of SN 2001el from 310 to 445 days past maximum light, obtained with the Very Large Telescope. The late-time optical (UBVRI) light curves decay in a nearly linear fashion with decay time scales of 1.43\pm0.14, 1.43\pm0.06, 1.48\pm0.06, 1.45\pm0.07, and 1.03\pm0.07 magnitudes (per hundred days) in the U, B, V, R and I bands, respectively. In contrast, in the near-infrared (JHKs) bands the time evolution of the flux appears to be nearly constant at these epochs. We measure decline rates (per hundred days) of 0.19\pm0.10 and 0.17\pm0.11 magnitudes in the J and H bands, respectively. We construct a UVOIR light curve, and find that the late-time luminosity has a decay time scale nearly consistent with complete depostion of positron kinetic energy. The late-time light curves of the normal type Ia SN 2001el demonstrate the increased importance of the near-infrared contribution. This was previously observed in the peculiar SN 2000cx, and the results for SN 2001el thus ensure that the conclusions previously based on a single peculiar event are applicable to normal type Ia supernovae. The measured late-time UVOIR decline rate suggests that a majority of the positrons are trapped within the ejecta. This results does not favor the predictions of a weak and/or radially combed magnetic field configuration.Comment: 4 pages with 2 figures plus 7 tables. Accepted for publication in A&A letter. Constructive comments welcome

    Moderately Luminous type II Supernovae

    Get PDF
    Core-collapse Supernovae (CC-SNe) descend from progenitors more massive than about 8 Msun. Because of the young age of the progenitors, the ejecta may eventually interact with the circumstellar medium (CSM) via highly energetic processes detectable in the radio, X-ray, ultraviolet (UV) and, sometimes, in the optical domains. In this paper we present ultraviolet, optical and near infrared observations of five type II SNe, namely SNe 2009dd, 2007pk, 2010aj, 1995ad, and 1996W. Together with few other SNe they form a group of moderately luminous type II events. We collected photometry and spectroscopy with several telescopes in order to construct well-sampled light curves and spectral evolutions from the photospheric to the nebular phases. Both photometry and spectroscopy indicate a degree of heterogeneity in this sample. The light curves have luminous peak magnitudes (16.95<MB<18.70-16.95<M_{B}<-18.70). The ejected masses of ^56\ni for three SNe span a wide range of values (2.8×1022.8\times10^{-2}Msun<<M(\ni)<1.4×101<1.4\times10^{-1}Msun), while for a fourth (SN2010aj) we could determine a stringent upper limit (7×1037\times10^{-3}Msun). Clues of interaction, such as the presence of high velocity (HV) features of the Balmer lines, are visible in the photospheric spectra of SNe 2009dd and 1996W. For SN2007pk we observe a spectral transition from a type IIn to a standard type II SN. Modelling the observations of SNe 2009dd, 2010aj and 1995ad with radiation hydrodynamics codes, we infer kinetic plus thermal energies of about 0.2-0.5 foe, initial radii of 2-5×1013\times10^{13} cm and ejected masses of \sim5.0-9.5 Msun. These values suggest moderate-mass, super-asymptotic giant branch (SAGB) or red super-giants (RSG) stars as SN precursors, in analogy with other luminous type IIP SNe 2007od and 2009bw.Comment: 28 pages, 27 fig, accepted by A&A, 3 pages of online material, abstract abridged. revised significantly with respect to the previous versio

    Discovery of Variability of the Progenitor of SN 2011dh in M51 Using the Large Binocular Telescope

    Full text link
    We show that the candidate progenitor of the core-collapse SN 2011dh in M51 (8 Mpc away) was fading by 0.039 +- 0.006 mag/year during the three years prior to the supernova, and that this level of variability is moderately unusual for other similar stars in M 51. While there are uncertainties about whether the true progenitor was a blue companion to this candidate, the result illustrates that there are no technical challenges to obtaining fairly high precision light curves of supernova progenitors using ground based observations of nearby (<10 Mpc) galaxies with wide field cameras on 8m-class telescopes. While other sources of variability may dominate, it is even possible to reach into the range of evolution rates required by the quasi-static evolution of the stellar envelope. For M 81, where we have many more epochs and a slightly longer time baseline, our formal 3 sigma sensitivity to slow changes is presently 3 millimag/year for a M_V ~= -8 mag star. In short, there is no observational barrier to determining whether the variability properties of stars in their last phases of evolution (post Carbon ignition) are different from earlier phases.Comment: 17 pages, 5 figures, submitted to Ap

    Supernova 2008bk and its red supergiant progenitor

    Get PDF
    Indexación: ISIHemos obtenido pocos datos fotométricos y espectroscópicos de supernova (SN) 2008bk en NGC 7793, principalmente a 150 días después de la explosión. Nos parece que se trata de un tipo II-Plateau (II-P) SN que más se asemeja a la de baja luminosidad SN 1999br en NGC 4900. Dada la similitud general entre las curvas de luz observadas y colores de SNs 2008bk y 1999br, inferimos que la extinción total visual a SN 2008bk ( A V = 0,065 mag) debe ser casi en su totalidad debido a un primer plano galáctico, similar a lo que ha supuesto para SN 1999br. Confirmamos la identificación de la supergigante roja putativo (RSG) estrella progenitora de SN en la alta calidad de g ' r ' i imágenes "que había obtenido en 2007 en el Gemini-Sur 8 telescopio m. Existe poca ambigüedad en esta identificación progenitor, calificándolo como el mejor ejemplo hasta la fecha, junto con la identificación de la estrella Sk -69 ° 202 como el progenitor de SN 1987A. A partir de una combinación de fotometría de las imágenes de Gemini con el de archivo, pre-SN, el Telescopio Muy Grande de JHK s imágenes, derivamos una precisa distribución observada energía espectral (SED) para el progenitor. Nos encontramos con índices de nebulares fuerte intensidad de emisiones de línea para varios H II regiones cercanas a la SN que la metalicidad en el medio ambiente es probable subsolar ( Z 0.6 Z ☉ ). El SED observado de la estrella concuerda bastante bien con SED sintéticos obtenidos a partir de modelos de atmósferas RSG eficaz con temperatura T eff = 3600 ± 50 K. Nos encontramos, por tanto, que la estrella tenía una luminosidad bolométrica con respecto al Sol de log ( L bol / L ☉ ) = 4,57 ± 0,06 y el radio R = 496 ± 34 R ☉ a ~ 6 meses antes de la explosión. Al comparar las propiedades del progenitor con teóricos masiva estrella modelos evolutivos, llegamos a la conclusión de que el progenitor RSG tenía una masa inicial en el rango de 8-8,5 M ☉ . Esta masa es consistente con, aunque en el extremo bajo de la gama inferido de masas iniciales para SN II-P progenitores. También es coherente con el límite superior estimado de la masa inicial de la progenitora de SN 1999br, y concuerda con las masas iniciales bajos encontrados para los progenitores RSG de otras supernovas de baja luminosidad II-P.http://www.sherpa.ac.uk/romeo/issn/0004-6256/es/http://iopscience.iop.org/1538-3881/143/1/19

    The Type IIP SN 2007od in UGC 12846: from a bright maximum to dust formation in the nebular phase

    Get PDF
    Ultraviolet (UV), optical and near infrared (NIR) observations of the type IIP supernova (SN) 2007od are presented, covering from the maximum light to the late phase, allowing to investigate in detail different physical phenomena in the expanding ejecta. These data turn this object into one of the most peculiar IIP ever studied. The early light curve of SN 2007od is similar to that of a bright IIPs with a short plateau, a bright peak (MV = -18 mag), but a very faint optical light curve at late time. However, with the inclusion of mid infrared (MIR) observations during the radioactive decay we have estimate a M(56Ni) ~ 2\times10^-2 M\odot. Modeling the bolometric light curve, ejecta expansion velocities and black-body temperature, we estimate a total ejected mass was 5 - 7.5 M\odot with a kinetic energy of at least 0.5 \times 10^51 erg. The early spectra reveal a boxy H{\alpha} profile and high velocities features of the Balmer series that suggest interaction between the ejecta and a close circum-stellar matter (CSM). SN 2007od may be, therefore, an intermediate case between a Type IIn SN and a typical Type IIP SN. Also late spectra show a clear evidence of CSM and the presence of dust formed inside the ejecta. The episodes of mass loss short before explosion, the bright plateau, along with the relatively small amount of 56Ni and the faint [O I] observed in the nebular spectra are consistent with a super-asympthotic giant branch (super-AGB) progenitor (M~9.7 - 11 M\odot).Comment: V2, some test added and three figures changed from the first version. 21 pages, 18 figures, accepted for publication in MNRAS on May 24, 201

    The Type IIn Supernova SN 2010bt: The Explosion of a Star in Outburst

    Get PDF
    Indexación: Scopus.It is well known that massive stars (M > 8 M ) evolve up to the collapse of the stellar core, resulting in most cases in a supernova (SN) explosion. Their heterogeneity is related mainly to different configurations of the progenitor star at the moment of the explosion and to their immediate environments. We present photometry and spectroscopy of SN 2010bt, which was classified as a Type IIn SN from a spectrum obtained soon after discovery and was observed extensively for about 2 months. After the seasonal interruption owing to its proximity to the Sun, the SN was below the detection threshold, indicative of a rapid luminosity decline. We can identify the likely progenitor with a very luminous star (log L/L ≈ 7) through comparison of Hubble Space Telescope images of the host galaxy prior to explosion with those of the SN obtained after maximum light. Such a luminosity is not expected for a quiescent star, but rather for a massive star in an active phase. This progenitor candidate was later confirmed via images taken in 2015 (∼5 yr post-discovery), in which no bright point source was detected at the SN position. Given these results and the SN behavior, we conclude that SN 2010bt was likely a Type IIn SN and that its progenitor was a massive star that experienced an outburst shortly before the final explosion, leading to a dense H-rich circumstellar environment around the SN progenitor. © 2018. The American Astronomical Society. All rights reserved.https://iopscience.iop.org/article/10.3847/1538-4357/aac51

    Supernova 2008bk and Its Red Supergiant Progenitor

    Get PDF
    We have obtained limited photometric and spectroscopic data for supernova (SN) 2008bk in NGC 7793, primarily at ≳ 150 days after explosion. We find that it is a Type II-Plateau (II-P) SN that most closely resembles the low-luminosity SN 1999br in NGC 4900. Given the overall similarity between the observed light curves and colors of SNe 2008bk and 1999br, we infer that the total visual extinction to SN 2008bk (A_V = 0.065 mag) must be almost entirely due to the Galactic foreground, similar to what has been assumed for SN 1999br. We confirm the identification of the putative red supergiant (RSG) progenitor star of the SN in high-quality g'r'i' images we had obtained in 2007 at the Gemini-South 8 m telescope. Little ambiguity exists in this progenitor identification, qualifying it as the best example to date, next to the identification of the star Sk –69°202 as the progenitor of SN 1987A. From a combination of photometry of the Gemini images with that of archival, pre-SN, Very Large Telescope JHK_s images, we derive an accurate observed spectral energy distribution (SED) for the progenitor. We find from nebular strong-intensity emission-line indices for several H II regions near the SN that the metallicity in the environment is likely subsolar (Z ≈ 0.6 Z_☉). The observed SED of the star agrees quite well with synthetic SEDs obtained from model RSG atmospheres with effective temperature T_(eff) = 3600 ± 50 K. We find, therefore, that the star had a bolometric luminosity with respect to the Sun of log (L_(bol)/L_☉) = 4.57 ± 0.06 and radius R* = 496 ± 34 R_☉ at ~6 months prior to explosion. Comparing the progenitor's properties with theoretical massive-star evolutionary models, we conclude that the RSG progenitor had an initial mass in the range of 8-8.5 M_☉. This mass is consistent with, albeit at the low end of, the inferred range of initial masses for SN II-P progenitors. It is also consistent with the estimated upper limit on the initial mass of the progenitor of SN 1999br, and it agrees with the low initial masses found for the RSG progenitors of other low-luminosity SNe II-P
    corecore