22 research outputs found

    Functional Genomics Differentiate Inherent and Environmentally Influenced Traits in Dinoflagellate and Diatom Communities

    Get PDF
    Dinoflagellates and diatoms are among the most prominent microeukaryotic plankton groups, and they have evolved different functional traits reflecting their roles within ecosystems. However, links between their metabolic processes and functional traits within different environmental contexts warrant further study. The functional biodiversity of dinoflagellates and diatoms was accessed with metatranscriptomics using Pfam protein domains as proxies for functional processes. Despite the overall geographic similarity of functional responses, abiotic (i.e., temperature and salinity; ~800 Pfam domains) and biotic (i.e., taxonomic group; ~1500 Pfam domains) factors influencing particular functional responses were identified. Salinity and temperature were identified as the main drivers of community composition. Higher temperatures were associated with an increase of Pfam domains involved in energy metabolism and a decrease of processes associated with translation and the sulfur cycle. Salinity changes were correlated with the biosynthesis of secondary metabolites (e.g., terpenoids and polyketides) and signal transduction processes, indicating an overall strong effect on the biota. The abundance of dinoflagellates was positively correlated with nitrogen metabolism, vesicular transport and signal transduction, highlighting their link to biotic interactions (more so than diatoms) and suggesting the central role of species interactions in the evolution of dinoflagellates. Diatoms were associated with metabolites (e.g., isoprenoids and carotenoids), as well as lysine degradation, which highlights their ecological role as important primary producers and indicates the physiological importance of these metabolic pathways for diatoms in their natural environment. These approaches and gathered information will support ecological questions concerning the marine ecosystem state and metabolic interactions in the marine environment

    Comparative Metabarcoding and Metatranscriptomic Analysis of Microeukaryotes Within Coastal Surface Waters of West Greenland and Northwest Iceland

    Get PDF
    Climate change alters environmental conditions that are expected to have a profound effect on the biodiversity, community composition, and metabolic processes of microeukaryotic plankton in Arctic and Subarctic coastal waters. The molecular biodiversity [large subunit (LSU) rRNA gene] of three plankton size-fractions (micro-, nano-, and picoplankton) from coastal waters of ice-influenced west Greenland was compared with fractions from ice-free northwest Iceland within their summer environmental context. Putative metabolic functions were determined by differentially expressed mRNA (metatranscriptomics) of the microplankton. Temperature and salinity variations were more closely correlated than inorganic macronutrients with metabolic functions and community composition. Temperature explained much of the community variance, approximately 20% among micro- and nanoplankton, whereas other environmental factors accounted for rather low fractional variance (<7%). Species of smaller cell-size were more evenly distributed (Pielou’s evenness index J) across regions, with a higher diversity and total abundance, and thereby indicating high plasticity. The metatranscriptomic profiles in these respective microeukaryotic communities revealed that diatoms were more plastic in their gene expression than dinoflagellates, but dinoflagellates had a more diverse, albeit homogeneously expressed, gene pool. This could be interpreted as expression of alternative lifestyle strategies, whereby the functionally more conservative diatoms fill their niches primarily through variable resource use, whereas dinoflagellates apparently differentiate their niches through more diverse lifestyles. Patterns of microeukaryotic diversity are thus primarily associated with differences in metabolic function and activity of diatom- versus dinoflagellate-dominated communities in Arctic and Subarctic waters during summer

    Connecting Actors With the Introduction of Mobile Technology in Health Care Practice Placements (4D Project):Protocol for a Mixed Methods Study

    Get PDF
    Background: The learning process in clinical placements for health care students is a multifaceted endeavor that engages numerous actors and stakeholders, including students, clinical tutors, link teachers, and academic assessors. Successfully navigating this complex process requires the implementation of tasks and mentorships that are synchronized with educational and clinical processes, seamlessly embedded within their respective contexts. Given the escalating number of students and the rising demand for health care services from the general population, it becomes imperative to develop additional tools that support the learning process. These tools aim to simplify day-to-day clinical practice, allowing a concentrated focus on value-based activities. This paper introduces a project funded by the European Commission that involves 5 European countries. The project’s objective is to comprehensively outline the entire process of development and ultimately implement mobile technology in practice placements. The project tackles the existing gap by constructing tailored mobile apps designed for students, teachers, tutors, and supervisors within each participating organization. This approach leverages practice-based learning, mobile technology, and technology adoption to enhance the overall educational experience. Objective: This study aims to introduce mobile technology in clinical practice placements with the goal of facilitating and enhancing practice-based learning. The objective is to improve the overall effectiveness of the process for all stakeholders involved. Methods: The “4D in the Digitalization of Learning in Practice Placement” (4D Project) will use a mixed methods research design, encompassing 3 distinct study phases: phase 1 (preliminary research), which incorporates focus groups and a scoping review, to define the problem, identify necessities, and analyze contextual factors; phase 2 (collaborative app development), which involves researchers and prospective users working together to cocreate and co-design tailored apps; and phase 3, which involves feasibility testing of these mobile apps within practice settings. Results: The study’s potential impact will primarily focus on improving communication and interaction processes, fostering connections among stakeholders in practice placements, and enhancing the assessment of training needs. The literature review and focus groups will play a crucial role in identifying barriers, facilitators, and factors supporting the integration of mobile technology in clinical education. The cocreation process of mobile learning apps will reveal the core values and needs of various stakeholders, including students, teachers, and health care professionals. This process also involves adapting and using mobile apps to meet the specific requirements of practice placements. A pilot study aimed at validating the app will test and assess mobile technology in practice placements. The study will determine results related to usability and design, learning outcomes, student engagement, communication among stakeholders, user behavior, potential issues, and compliance with regulations. Conclusions: Health care education, encompassing disciplines such as medicine, nursing, midwifery, and others, confronts evolving challenges in clinical training. Essential to addressing these challenges is bridging the gap between health care institutions and academic settings. The introduction of a new digital tool holds promise for empowering health students and mentors in effectively navigating the intricacies of the learning process.</p

    Metatranscriptome Profiling Indicates Size-Dependent Differentiation in Plastic and Conserved Community Traits and Functional Diversification in Dinoflagellate Communities

    Get PDF
    Communities of microscopic dinoflagellates are omnipresent in aquatic ecosystems. Consequently, their traits drive community processes with profound effects on global biogeochemistry. Species traits are, however, not necessarily static but respond to environmental changes in order to maintain fitness and may differ with cell size that scales physiological rates. Comprehending such trait characteristics is necessary for a mechanistic understanding of plankton community dynamics and resulting biogeochemical impacts. Here, we used information theory to analyze metatranscriptomes of micro- and nano-dinoflagellate communities in three ecosystems. Measures of gene expression variations were set as a proxy to determine conserved and plastic community traits and the environmental influence on trait changes. Using metabarcoding, we further investigated if communities with a more similar taxon composition also express more similar traits. Our results indicate that plastic community traits mainly arise from membrane vesicle associated processes in all the environments we investigated. A specific environmental influence on trait plasticity was observed to arise from nitrogen availability in both size classes. Species interactions also appeared to be responsible for trait plasticity in the smaller-sized dinoflagellates. Additionally, the smaller-sized dinoflagellate communities are characterized by the expression of a large pool of habitat specific genes despite being taxonomically more similar across the habitats, in contrast to the microplanktonic assemblages that adapted to their environments by changing species composition. Our data highlight the functional diversification on the gene level as a signature of smaller sized dinoflagellates, nitrogen availability and species interactions as drivers of trait plasticity, and traits most likely linked to fitness and community performance

    Comparative Metabarcoding and Metatranscriptomic Analysis of Microeukaryotes Within Coastal Surface Waters of West Greenland and Northwest Iceland

    No full text
    Climate change alters environmental conditions that are expected to have a profound effect on the biodiversity, community composition, and metabolic processes of microeukaryotic plankton in Arctic and Subarctic coastal waters. The molecular biodiversity [large subunit (LSU) rRNA gene] of three plankton size-fractions (micro-, nano-, and picoplankton) from coastal waters of ice-influenced west Greenland was compared with fractions from ice-free northwest Iceland within their summer environmental context. Putative metabolic functions were determined by differentially expressed mRNA (metatranscriptomics) of the microplankton. Temperature and salinity variations were more closely correlated than inorganic macronutrients with metabolic functions and community composition. Temperature explained much of the community variance, approximately 20% among micro- and nanoplankton, whereas other environmental factors accounted for rather low fractional variance (<7%). Species of smaller cell-size were more evenly distributed (Pielou's evenness index J) across regions, with a higher diversity and total abundance, and thereby indicating high plasticity. The metatranscriptomic profiles in these respective microeukaryotic communities revealed that diatoms were more plastic in their gene expression than dinoflagellates, but dinoflagellates had a more diverse, albeit homogeneously expressed, gene pool. This could be interpreted as expression of alternative lifestyle strategies, whereby the functionally more conservative diatoms fill their niches primarily through variable resource use, whereas dinoflagellates apparently differentiate their niches through more diverse lifestyles. Patterns of microeukaryotic diversity are thus primarily associated with differences in metabolic function and activity of diatom- versus dinoflagellate-dominated communities in Arctic and Subarctic waters during summer

    OTU sample description of Maria S. Merian cruise MSM21/3 (ARCHEMHAB)

    No full text
    Sampling was performed during the MSM-21/3 expedition (Cembella et al., 2016) aboard the RV Maria S. Merian at the western coast of Greenland and Iceland between July 27 to August 8, 2012 (Fig. 1). Water samples were collected in the epipelagic zone by Niskin bottles mounted on a rosette-sampler with conductivity, temperature and depth (CTD) sensors to measure temperature and salinity. In total, 15 stations were sampled at the surface layer (over the upper 30 m)
    corecore