18 research outputs found
First report outside Eastern Europe of West Nile virus lineage 2 related to the Volgograd 2007 strain, northeastern Italy, 2014
open11noWest Nile virus (WNV) is a Flavivirus transmitted to vertebrate hosts by mosquitoes, maintained in nature through an enzootic bird-mosquito cycle. In Europe the virus became of major public health and veterinary concern in the 1990s. In Italy, WNV re-emerged in 2008, ten years after the previous outbreak and is currently endemic in many areas of the country. In particular, the northeastern part of Italy experience continuous viral circulation, with human outbreaks caused by different genovariants of WNV lineage 1, Western-European and Mediterranean subcluster, and WNV lineage 2, Hungarian clade. Alongside the WNV National Surveillance Program that has been in place since 2002, regional surveillance plans were implemented after 2008 targeting mosquitoes, animals and humans.openRavagnan, Silvia; Montarsi, Fabrizio; Cazzin, Stefania; Porcellato, Elena; Russo, Francesca; Palei, Manlio; Monne, Isabella; Savini, Giovanni; Marangon, Stefano; Barzon, Luisa; Capelli, GioiaRavagnan, Silvia; Montarsi, Fabrizio; Cazzin, Stefania; Porcellato, Elena; Russo, Francesca; Palei, Manlio; Monne, Isabella; Savini, Giovanni; Marangon, Stefano; Barzon, Luisa; Capelli, Gioi
Occurrence of Rickettsia felis in dog and cat fleas (Ctenocephalides felis) from Italy
Rickettsia felis is an obligate intracellular bacterium belonging to the spotted fever group, suspected to cause a murine typhus-like illness in humans, with a cosmopolitan distribution. This study was designed to estimate presence and occurrence of this pathogen in fleas collected from dogs and cats in different areas of Italy. Two species of fleas were identified, Ctenocephalides felis (80.3%) and Ctenocephalides canis (19.7%)
Occurrence and identification of risk areas of Ixodes ricinus-borne pathogens: a cost-effectiveness analysis in north-eastern Italy
<p>Abstract</p> <p>Background</p> <p><it>Ixodes ricinus</it>, a competent vector of several pathogens, is the tick species most frequently reported to bite humans in Europe. The majority of human cases of Lyme borreliosis (LB) and tick-borne encephalitis (TBE) occur in the north-eastern region of Italy. The aims of this study were to detect the occurrence of endemic and emergent pathogens in north-eastern Italy using adult tick screening, and to identify areas at risk of pathogen transmission. Based on our results, different strategies for tick collection and pathogen screening and their relative costs were evaluated and discussed.</p> <p>Methods</p> <p>From 2006 to 2008 adult ticks were collected in 31 sites and molecularly screened for the detection of pathogens previously reported in the same area (i.e., LB agents, TBE virus, <it>Anaplasma phagocytophilum, Rickettsia </it>spp., <it>Babesia </it>spp., "<it>Candidatus Neoehrlichia mikurensis</it>"). Based on the results of this survey, three sampling strategies were evaluated <it>a</it>-<it>posteriori</it>, and the impact of each strategy on the final results and the overall cost reductions were analyzed. The strategies were as follows: tick collection throughout the year and testing of female ticks only (strategy A); collection from April to June and testing of all adult ticks (strategy B); collection from April to June and testing of female ticks only (strategy C).</p> <p>Results</p> <p>Eleven pathogens were detected in 77 out of 193 ticks collected in 14 sites. The most common microorganisms detected were <it>Borrelia burgdorferi </it>sensu lato (17.6%), <it>Rickettsia helvetica </it>(13.1%), and "<it>Ca. N. mikurensis</it>" (10.5%). Within the <it>B. burgdorferi </it>complex, four genotypes (i.e., <it>B. valaisiana, B. garinii, B. afzelii</it>, and <it>B. burgdorferi </it>sensu stricto) were found. Less prevalent pathogens included <it>R. monacensis </it>(3.7%), TBE virus (2.1%), <it>A. phagocytophilum </it>(1.5%), <it>Bartonella </it>spp. (1%), and <it>Babesia </it>EU1 (0.5%). Co-infections by more than one pathogen were diagnosed in 22% of infected ticks. The prevalences of infection assessed using the three alternative strategies were in accordance with the initial results, with 13, 11, and 10 out of 14 sites showing occurrence of at least one pathogen, respectively. The strategies A, B, and C proposed herein would allow to reduce the original costs of sampling and laboratory analyses by one third, half, and two thirds, respectively. Strategy B was demonstrated to represent the most cost-effective choice, offering a substantial reduction of costs, as well as reliable results.</p> <p>Conclusions</p> <p>Monitoring of tick-borne diseases is expensive, particularly in areas where several zoonotic pathogens co-occur. Cost-effectiveness studies can support the choice of the best monitoring strategy, which should take into account the ecology of the area under investigation, as well as the available budget.</p
Guidance Signals in Neuronal Differantiation: biomimetic Peptides for Regenerative Medicine
This thesis focuses on development and characterizaton of novel biomimetic peptides for neuronal differentiation. Based on database search, sequences homology and structural closenes, ten novel peptides - from CAM and ECM protein families: CHL1, Nerutofascin, NrCam, DCC, Robo2 and 3, LINGO2, CONTACTIN 1, 2 AND 5 were designed. Thes peptides were synthetized in SPPS, purified through RP-HPLC and their identities were confirmed by Mass Spectroscopy. Subsequent conformational analysis via CD, showed them all to assum a random coil conformation. The, thei effects on cell is tested, in order to prove their biomimetic activity. Alla novel peptides were tested on SH-SY5Y celle line to evaluate thei effect on neuronal differentiation and especally in neurite outgrowth and elongation. The entire peptide set was tested (including a number of combination) and it resulted effective
A conserved Neurite Outgrowth and Guidance motif with biomimetic potential in neuronal Cell Adhesion Molecules
none10noThe discovery of conserved protein motifs can, in turn, unveil important regulatory signals, and when properly designed, synthetic peptides derived from such motifs can be used as biomimetics for biotechnological and therapeutic purposes. We report here that specific Ig-like repeats from the extracellular domains of neuronal Cell Adhesion Molecules share a highly conserved Neurite Outgrowth and Guidance (NOG) motif, which mediates homo- and heterophilic interactions crucial in neural development and repair. Synthetic peptides derived from the NOG motif of such proteins can boost neuritogenesis, and this potential is also retained by peptides with recombinant sequences, when fitting the NOG sequence pattern. The NOG motif discovery not only provides one more tile to the complex puzzle of neuritogenesis, but also opens the route to new neural regeneration strategies via a tunable biomimetic toolbox.openScapin, Giorgia; Gasparotto, Matteo; Peterle, Daniele; Tescari, Simone; Porcellato, Elena; Piovesan, Alberto; Righetto, Irene; Acquasaliente, Laura; De Filippis, Vincenzo; Filippini, FrancescoScapin, Giorgia; Gasparotto, Matteo; Peterle, Daniele; Tescari, Simone; Porcellato, Elena; Piovesan, Alberto; Righetto, Irene; Acquasaliente, Laura; De Filippis, Vincenzo; Filippini, Francesc
Occurrence and Identification of Ixodes ricinus Borne Pathogens in Northeastern Italy
In Europe, Ixodes ricinus is the main vector for tick-borne pathogens (TBPs), the most common tick species in Italy, particularly represented in pre-alpine and hilly northern areas. From 2011 to 2017, ticks were collected by dragging in Belluno province (northeast Italy) and analyzed by molecular techniques for TBP detection. Several species of Rickettsia spp. and Borrelia spp. Anaplaspa phagocitophilum, Neoerlichia mikurensis and Babesia venatorum, were found to be circulating in the study area carried by I. ricinus (n = 2668, all stages). Overall, 39.1% of screened pools were positive for at least one TBP, with a prevalence of 12.25% and 29.2% in immature stages and adults, respectively. Pathogens were detected in 85% of the monitored municipalities, moreover the presence of TBPs varied from one to seven different pathogens in the same year. The annual TBPs prevalence fluctuations observed in each municipality highlights the necessity of performing continuous tick surveillance. In conclusion, the observation of TBPs in ticks remains an efficient strategy for monitoring the circulation of tick-borne diseases (TBDs) in a specific area
Ticks are more suitable than red foxes for monitoring zoonotic tick-borne pathogens in northeastern Italy
Abstract Background Northeastern Italy is a hotspot for several tick-borne pathogens, transmitted to animals and humans mainly by Ixodes ricinus. Here we compare the results of molecular monitoring of ticks and zoonotic TBPs over a six-year period, with the monitoring of red foxes (Vulpes vulpes) in an endemic area. Results In the period 2011–2016, 2,578 ticks were collected in 38 sites of 20 municipalities of Belluno Province. Individual adults (264), pooled larvae (n = 330) and nymphs (n = 1984) were screened for tick-borne encephalitis virus, Borrelia burgdorferi (s.l.), Rickettsia spp., Babesia spp., Anaplasma phagocytophilum and “Candidatus Neoehrlichia mikurensis” by specific SYBR green real-time PCR assays and sequencing. The spleens of 97 foxes, culled in the period 2015–2017 during sport hunting or population control programs, were also screened. Overall, nine different pathogens were found in I. ricinus nymph and adult ticks: Rickettsia helvetica (3.69%); R. monacensis (0.49%); four species of the B. burgdorferi (s.l.) complex [B. afzelii (1.51%); B. burgdorferi (s.s.) (1.25%); B. garinii (0.18%); and B. valaisiana (0.18%)]; A. phagocytophilum (3.29%); “Candidatus N. mikurensis” (1.73%); and Babesia venatorum (0.04%). Larvae were collected and screened in the first year only and two pools (0.6%) were positive for R. helvetica. Tick-borne encephalitis virus was not found in ticks although human cases do occur in the area. The rate of infection in ticks varied widely according to tick developmental stage, site and year of collection. As expected, adults were the most infected, with 27.6% harboring at least one pathogen compared to 7.3% of nymphs. Pathogens with a minimum infection rate above 1% were recorded every year. None of the pathogens found in ticks were detectable in the foxes, 52 (54%) of which were instead positive for Babesia cf. microti (also referred to as Babesia microti-like, “Theileria annae”, “Babesia annae” and “Babesia vulpes”). Conclusions The results show that foxes cannot be used as sentinel animals to monitor tick-borne pathogens in the specific epidemiological context of northeastern Italy. The high prevalence of Babesia cf. microti in foxes and its absence in ticks strongly suggests that I. ricinus is not the vector of this pathogen
Real-time PCR assay for screening Pneumocystis in free-living wild squirrels and river rats in Italy
We used a real-time PCR (rtPCR) targeting a 150-bp amplicon of the mitochondrial small subunit of ribosomal RNA (mtSSU rRNA) to screen for Pneumocystis DNA in lungs of wild squirrels ( Callosciurus finlaysonii, n = 85) and river rats ( Myocastor coypus, n = 43) in Italy. The rtPCR revealed Pneumocystis DNA in 20 of 85 (24%) squirrels and in 35 of 43 (81%) river rats, and was more sensitive than a nested PCR that targets a portion of the mtSSU rRNA and the mitochondrial large subunit of rRNA (mtLSU rRNA). Phylogenetic analysis based on mtSSU rRNA and mtLSU rRNA sequences showed distinct Pneumocystis sequence types in these rodents. The rtPCR assay should be reliable for screening large populations for this potential pathogen, thereby allowing cost-effective monitoring of the disease in wild animals