3 research outputs found

    Hydrogen activation by [NiFe]-hydrogenases

    Get PDF
    Hydrogenase-1 (Hyd-1) from Escherichia coli is a membrane-bound enzyme that catalyses the reversible oxidation of molecular H2 The active site contains one Fe and one Ni atom and several conserved amino acids including an arginine (Arg(509)), which interacts with two conserved aspartate residues (Asp(118) and Asp(574)) forming an outer shell canopy over the metals. There is also a highly conserved glutamate (Glu(28)) positioned on the opposite side of the active site to the canopy. The mechanism of hydrogen activation has been dissected by site-directed mutagenesis to identify the catalytic base responsible for splitting molecular hydrogen and possible proton transfer pathways to/from the active site. Previous reported attempts to mutate residues in the canopy were unsuccessful, leading to an assumption of a purely structural role. Recent discoveries, however, suggest a catalytic requirement, for example replacing the arginine with lysine (R509K) leaves the structure virtually unchanged, but catalytic activity falls by more than 100-fold. Variants containing amino acid substitutions at either or both, aspartates retain significant activity. We now propose a new mechanism: heterolytic H2 cleavage is via a mechanism akin to that of a frustrated Lewis pair (FLP), where H2 is polarized by simultaneous binding to the metal(s) (the acid) and a nitrogen from Arg(509) (the base)

    Mechanism of hydrogen activation by [NiFe] hydrogenases

    No full text
    © 2015 Nature America, Inc. All rights reserved. The active site of [NiFe] hydrogenases contains a strictly conserved arginine that suspends a guanidine nitrogen atom 100-fold lower activity than native enzyme. Conversely, the variants D574N, D118A and D118N/D574N, in which the position of the guanidine headgroup is retained, showed 83%, 26% and 20% activity, respectively. The special kinetic requirement for R509 implicates the suspended guanidine group as the general base in H2 activation by [NiFe] hydrogenases
    corecore