13 research outputs found

    Morphological, Ecological and Molecular Studies of <i>Vannella simplex</i> Wohlfarth-Bottermann 1960 (Lobosea, Gymnamoebia), with a new Diagnosis of this Species

    No full text
    Vannella simplex (Gymnamoebia, Vannellidae) is one of the most common amoebae species, recorded from a variety of regions. It was originally described as a freshwater species, but has also been reported from shallow-water regions of the Baltic Sea. In the present work, we investigated the morphology and biology of three V. simplex isolates, originating from geographically distant regions. Among them is one brackish water strain, isolated from artificial cyanobacterial mats, which were originally sampled in Nivå Bay (Baltic Sea, The Sound). The strain is cyst-forming and can thrive at salinity ranges from 0–50 ppt. Phylogenetic relationships were investigated by sequencing partial SSU rDNA of the cultured V. simplex isolates. Additional sequences were obtained from four environmental DNA extractions of sediment samples collected from different localities in Switzerland. Analysis of all obtained sequences revealed a monophyletic group. Based on the analysis and comparison of morphological, ecological and molecular data sets we compiled a distribution map of V. simplex and propose an emendation of this species

    Transfer of the members of the genus Brachiola (microsporidia) to the genus Anncaliia based on ultrastructural and molecular data

    No full text
    Two microsporidian genera, AnncaliiaIssi, Krylova, & Nicolaeva 1993 and BrachiolaCali et al. 1998, possess a Nosema-type life cycle and unique cell surface ornamentations, which include precocious electron-dense coating of the plasmalemma and a variety of secretory structures deposited on the parasite surface and scattered in the host cell cytoplasm. Comparative analysis of ultrastructure of Anncaliia meligethi (the type species of the genus Anncaliia) and of B. vesicularum and B. algerae (the best-studied members of the genus Brachiola) clearly demonstrated that these microsporidia share many distinctive morphological features. The comparison of small subunit ribosomal DNA sequences showed high sequence identity of A. meligethi and B. algerae. Phylogenetic analyses indicated that the rDNA sequences of A. meligethi clustered with those of B. algerae suggesting a close relatedness of these microsporidia. The combination of molecular and morphological data provided clear evidence that these microsporidia belong to the same genus and therefore, warranted emendation of the genus Anncaliia and establishments of the following new combinations: Anncaliia vesicularum nov. comb., Anncaliia algerae nov. comb., Anncaliia connori nov. comb., and Anncaliia gambiae nov. comb. The generic name Brachiola is submerged according to the rule of priority

    Diversity, Distribution, and Development of Hyperparasitic Microsporidia in Gregarines within One Super-Host

    No full text
    Metchnikovellids (Microsporidia: Metchnikovellida) are poorly studied hyperparasitic microsporidia that live in gregarines inhabiting the intestines of marine invertebrates, mostly polychaetes. Our recent studies showed that diversity of metchnikovellids might be significantly higher than previously thought, even within a single host. Four species of metchnikovellids were found in the gregarines inhabiting the gut of the polychaete Pygospio elegans from littoral populations of the White and Barents Seas: the eugregarine Polyrhabdina pygospionis is the host for Metchnikovella incurvata and M. spiralis, while the archigregarine Selenidium pygospionis is the host for M. dogieli and M. dobrovolskiji. The most common species in the White Sea is M. incurvata, while M. dobrovolskiji prevails in the Barents Sea. Gregarines within a single worm could be infected with different metchnikovellid species. However, co-infection of one and the same gregarine with several species of metchnikovellids has never been observed. The difference in prevalence and intensity of metchnikovellid invasion apparently depends on the features of the life cycle and on the development strategies of individual species

    Phylogeny of Lobose Amoebae Based on Actin and Small-Subunit Ribosomal RNA Genes

    No full text
    Lobose amoebae are abundant free-living protists and important pathogenic agents, yet their evolutionary history and position in the universal tree of life are poorly known. Molecular data for lobose amoebae are limited to a few species, and all phylogenetic studies published so far lacked representatives of many of their taxonomic groups. Here we analyze actin and small-subunit ribosomal RNA (SSU rRNA) gene sequences of a broad taxon sampling of naked, lobose amoebae. Our results support the existence of a monophyletic Amoebozoa clade, which comprises all lobose amoebae examined so far, the amitochondriate pelobionts and entamoebids, and the slime molds. Both actin and SSU rRNA phylogenies distinguish two well-defined clades of amoebae, the “Gymnamoebia sensu stricto” and the Archamoebae (pelobionts + entamoebids), and one weakly supported and ill-resolved group comprising some naked, lobose amoebae and the Mycetozoa

    Evolutionary Genomics of Metchnikovella incurvata (Metchnikovellidae): An Early Branching Microsporidium

    No full text
    International audienceAbstract Metchnikovellids are highly specialized hyperparasites, which infect and reproduce inside gregarines (Apicomplexa) inhabiting marine invertebrates. Their phylogenetic affiliation was under constant discussion until recently, when analysis of the first near-complete metchnikovellid genome, that of Amphiamblys sp., placed it in a basal position with respect to most Microsporidia. Microsporidia are a highly diversified lineage of extremely reduced parasites related to Rozellida (Rozellosporidia = Rozellomycota = Cryptomycota) within the Holomycota clade of Opisthokonta. By sequencing DNA from a single-isolated infected gregarine cell we obtained an almost complete genome of a second metchnikovellid species, and the first one of a taxonomically described and well-documented species, Metchnikovella incurvata. Our phylogenomic analyses show that, despite being considerably divergent from each other, M. incurvata forms a monophyletic group with Amphiamplys sp., and confirm that metchnikovellids are one of the deep branches of Microsporidia. Comparative genomic analysis demonstrates that, like most Microsporidia, metchnikovellids lack mitochondrial genes involved in energy transduction and are thus incapable of synthesizing their own ATP via mitochondrial oxidative phosphorylation. They also lack the horizontally acquired ATP transporters widespread in most Microsporidia. We hypothesize that a family of mitochondrial carrier proteins evolved to transport ATP from the host into the metchnikovellid cell. We observe the progressive reduction of genes involved in DNA repair pathways along the evolutionary path of Microsporidia, which might explain, at least partly, the extremely high evolutionary rate of the most derived species. Our data also suggest that genome reduction and acquisition of novel genes co-occurred during the adaptation of Microsporidia to their hosts

    Phylogeny and Systematics of Leptomyxid Amoebae (Amoebozoa, Tubulinea, Leptomyxida)

    No full text
    We describe four new species of Flabellula, Leptomyxa and Rhizamoeba and publish new SSU rRNA gene and actin gene sequences of leptomyxids. Using these data we provide the most comprehensive SSU phylogeny of leptomyxids to date. Based on the analyses of morphological data and results of the SSU rRNA gene phylogeny we suggest changes in the systematics of the order Leptomyxida (Amoebozoa: Lobosa: Tubulinea). We propose to merge the genera Flabellula and Paraflabellula (the genus Flabellula remains valid by priority rule). The genus Rhizamoeba is evidently polyphyletic in all phylogenetic trees; we suggest retaining the generic name Rhizamoeba for the group unifying R. saxonica, R.matisi n. sp. and R. polyura, the latter remains the type species of the genus Rhizamoeba. Based on molecular and morphological evidence we move all remaining Rhizamoeba species to the genus Leptomyxa. New family Rhizamoebidae is established here in order to avoid paraphyly of the family Leptomyxidae. With the suggested changes both molecular and morphological systems of the order Leptomyxida are now fully congruent to each other. (C) 2016 Elsevier GmbH. All rights reserved

    Phylogeny and Systematics of Leptomyxid Amoebae (Amoebozoa, Tubulinea, Leptomyxida)

    No full text
    We describe four new species of Flabellula, Leptomyxa and Rhizamoeba and publish new SSU rRNA gene and actin gene sequences of leptomyxids. Using these data we provide the most comprehensive SSU phylogeny of leptomyxids to date. Based on the analyses of morphological data and results of the SSU rRNA gene phylogeny we suggest changes in the systematics of the order Leptomyxida (Amoebozoa: Lobosa: Tubulinea). We propose to merge the genera Flabellula and Paraflabellula (the genus Flabellula remains valid by priority rule). The genus Rhizamoeba is evidently polyphyletic in all phylogenetic trees; we suggest retaining the generic name Rhizamoeba for the group unifying R. saxonica, R.matisi n. sp. and R. polyura, the latter remains the type species of the genus Rhizamoeba. Based on molecular and morphological evidence we move all remaining Rhizamoeba species to the genus Leptomyxa. New family Rhizamoebidae is established here in order to avoid paraphyly of the family Leptomyxidae. With the suggested changes both molecular and morphological systems of the order Leptomyxida are now fully congruent to each other
    corecore