18 research outputs found
A Transcriptomic Approach to Search for Novel Phenotypic Regulators in McArdle Disease
McArdle disease is caused by lack of glycogen phosphorylase (GP) activity in skeletal muscle. Patients experience exercise intolerance, presenting as early fatigue and contractures. In this study, we investigated the effects produced by a lack of GP on several genes and proteins of skeletal muscle in McArdle patients. Muscle tissue of 35 patients and 7 healthy controls were used to identify abnormalities in the patients' transcriptomic profile using low-density arrays. Gene expression was analyzed for the influence of variables such as sex and clinical severity. Differences in protein expression were studied by immunoblotting and 2D electrophoresis analysis, and protein complexes were examined by two-dimensional, blue native gel electrophoresis (BN-PAGE). A number of genes including those encoding acetyl-coA carboxylase beta, m-cadherin, calpain III, creatine kinase, glycogen synthase (GS), and sarcoplasmic reticulum calcium ATPase 1 (SERCA1), were found to be downregulated in patients. Specifically, compared to controls, GS and SERCA1 proteins were reduced by 50% and 75% respectively; also, unphosphorylated GS and SERCA1 were highly downregulated. On BN-PAGE analysis, GP was present with GS in two muscle protein complexes. Our findings revealed some issues that could be important in understanding the physiological consequences of McArdle disease: (i) SERCA1 downregulation in patients could result in impaired calcium transport in type II (fast-twitch) muscle fibers, leading to early fatigability during exercise tasks involving type II fibers (which mostly use glycolytic metabolism), i.e. isometric exercise, lifting weights or intense dynamic exercise (stair climbing, bicycling, walking at a very brisk pace), (ii) GP and GS were found together in two protein complexes, which suggests a new regulatory mechanism in the activity of these glycogen enzymes
Safety and Efficacy of Crizotinib in Combination with Temozolomide and Radiotherapy in Patients with Newly Diagnosed Glioblastoma: Phase Ib GEINO 1402 Trial
Simple Summary Most patients with glioblastoma, the most frequent primary brain tumor in adults, develop resistance to standard first-line treatment combining temozolomide and radiotherapy. Signaling through the hepatocyte growth factor receptor (c-MET) and the midkine (ALK ligand) promotes gliomagenesis and glioma stem cell maintenance, contributing to the resistance of glioma cells to anticancer therapies. This trial reports for the first time that the addition of crizotinib, an ALK, ROS1, and c-MET inhibitor, to standard RT and TMZ is safe and resulted in a promising efficacy for newly diagnosed patients with glioblastoma. Background: MET-signaling and midkine (ALK ligand) promote glioma cell maintenance and resistance against anticancer therapies. ALK and c-MET inhibition with crizotinib have a preclinical therapeutic rationale to be tested in newly diagnosed GBM. Methods: Eligible patients received crizotinib with standard radiotherapy (RT)/temozolomide (TMZ) followed by maintenance with crizotinib. The primary objective was to determine the recommended phase 2 dose (RP2D) in a 3 + 3 dose escalation (DE) strategy and safety evaluation in the expansion cohort (EC). Secondary objectives included progression-free (PFS) and overall survival (OS) and exploratory biomarker analysis. Results: The study enrolled 38 patients. The median age was 52 years (33-76), 44% were male, 44% were MGMT methylated, and three patients had IDH1/2 mutation. In DE, DLTs were reported in 1/6 in the second cohort (250 mg/QD), declaring 250 mg/QD of crizotinib as the RP2D for the EC. In the EC, 9/25 patients (32%) presented grade >= 3 adverse events. The median follow up was 18.7 months (m) and the median PFS was 10.7 m (95% CI, 7.7-13.8), with a 6 m PFS and 12 m PFS of 71.5% and 38.8%, respectively. At the time of this analysis, 1 died without progression and 24 had progressed. The median OS was 22.6 m (95% CI, 14.1-31.1) with a 24 m OS of 44.5%. Molecular biomarkers showed no correlation with efficacy. Conclusions: The addition of crizotinib to standard RT and TMZ for newly diagnosed GBM was safe and the efficacy was encouraging, warranting prospective validation in an adequately powered, randomized controlled study
Multicentric standardization of protocols for the diagnosis of human mitochondrial respiratory chain defects
The quantification of mitochondrial respiratory chain (MRC) enzymatic activities is essential for diagnosis of a wide range of mitochondrial diseases, ranging from inherited defects to secondary dysfunctions. MRC lesion is frequently linked to extended cell damage through the generation of proton leak or oxidative stress, threatening organ viability and patient health. However, the intrinsic challenge of a methodological setup and the high variability in measuring MRC enzymatic activities represents a major obstacle for comparative analysis amongst institutions. To improve experimental and statistical robustness, seven Spanish centers with extensive experience in mitochondrial research and diagnosis joined to standardize common protocols for spectrophotometric MRC enzymatic measurements using minimum amounts of sample. Herein, we present the detailed protocols, reference ranges, tips and troubleshooting methods for experimental and analytical setups in different sample preparations and tissues that will allow an international standardization of common protocols for the diagnosis of MRC defects. Methodological standardization is a crucial step to obtain comparable reference ranges and international standards for laboratory assays to set the path for further diagnosis and research in the field of mitochondrial diseases. © 2022 by the authors. Licensee MDPI, Basel, Switzerland
Expression of the muscle glycogen phosphorylase gene in patients with McArdle disease: the role of nonsense-mediated mRNA decay
Nearly 35% of all mutations identified in the muscle glycogen phosphorylase gene (PYGM) in patients with McArdle disease result in premature termination codons (PTCs), particularly the p.R50X mutation. The latter accounts for more than 50% of the mutated alleles in most Caucasian patient populations. Mutations resulting in PTC could trigger the degradation of mRNA through a mechanism known as nonsense mediated decay (NMD). To investigate if NMD affects the levels of transcripts containing PYGM mutations, 28 Spanish patients with McArdle disease, harboring 17 different mutations with PTCs in 77% of their alleles, were studied. Transcripts levels of PYGM were measured and sequenced. We assessed that 92% of patients showed NMD. The most frequent mutation (p.R50X) elicited decay in all the genotypes tested. Other PTC producing mutations resulting in NMD were: p.L5VfsX22, p.Q73HfsX7, p.E125X, p.N134KfsX161, p.W388SfsX34, p.R491AfsX7, and p.D534VfsX5. Located in the last exon, the mutation p.E797VfsX19 was not affected by NMD. Missense mutations did not appear to be affected by NMD. In the cDNA sequences they appeared as homozygous, despite being heterozygous in the genomic DNA sequences. Exceptions to the rules governing NMD were found in the mutations p.A704 V and p.K754NfsX49.7.033 JCR (2008) Q1, 15/138 Genetics & heredityUE
Bilateral striatal necrosis associated with a novel mutation in the mitochondrial ND6 gene.
[eng] We report the molecular findings in two independent patients presenting with progressive generalized dystonia and bilateral striatal necrosis in whom we have identified a mutation (T14487C) in the mitochondrial ND6 gene. The mutation is heteroplasmic in all samples analyzed, and it fulfills all accepted criteria of pathogenicity. Transmitochondrial cell lines harboring 100% mutant mitochondrial DNA showed a marked decrease in the activity of complex I of the respiratory chain supporting the pathogenic role of T14487C
Knock-in mice for the R50X mutation in the PYGM gene present with McArdle disease
McArdle disease (glycogenosis type V), the most common muscle glycogenosis, is a recessive disorder caused by mutations in PYGM, the gene encoding myophosphorylase. Patients with McArdle disease typically experience exercise intolerance manifested as acute crises of early fatigue and contractures, sometimes with rhabdomyolysis and myoblobinuria, triggered by static muscle contractions or dynamic exercises. Currently, there are no therapies to restore myophosphorylase activity in patients. Although two spontaneous animal models for McArdle disease have been identified (cattle and sheep), they have rendered a limited amount of information on the pathophysiology of the disorder; therefore, there have been few opportunities for experimental research in the field. We have developed a knock-in mouse model by replacing the wild-type allele of Pygm with a modified allele carrying the common human mutation, p.R50X, which is the most frequent cause of McArdle disease. Histochemical, biochemical and molecular analyses of the phenotype, as well as exercise tests, were carried out in homozygotes, carriers and wild-type mice. p.R50X/p.R50X mice showed undetectable myophosphorylase protein and activity in skeletal muscle. Histochemical and biochemical analyses revealed massive muscle glycogen accumulation in homozygotes, in contrast to heterozygotes or wild-type mice, which did not show glycogen accumulation in this tissue. Additional characterization confirmed a McArdle disease-like phenotype in p.R50X/p.R50X mice, i.e. they had hyperCKaemia and very poor exercise performance, as assessed in the wire grip and treadmill tests (6% and 5% of the wild-type values, respectively). This model represents a powerful tool for in-depth studies of the pathophysiology of McArdle disease and other neuromuscular disorders, and for exploring new therapeutic approaches for genetic disorders caused by premature stop codon mutations.9.915 JCR (2012) Q1, 5/191 Clinical neurology, 10/251 NeurosciencesUE
Mitochondrial DAMPs induce endotoxin tolerance in human monocytes: an observation in patients with myocardial infarction.
Monocyte exposure to mitochondrial Danger Associated Molecular Patterns (DAMPs), including mitochondrial DNA (mtDNA), induces a transient state in which these cells are refractory to further endotoxin stimulation. In this context, IRAK-M up-regulation and impaired p65 activity were observed. This phenomenon, termed endotoxin tolerance (ET), is characterized by decreased production of cytokines in response to the pro-inflammatory stimulus. We also show that monocytes isolated from patients with myocardial infarction (MI) exhibited high levels of circulating mtDNA, which correlated with ET status. Moreover, a significant incidence of infection was observed in those patients with a strong tolerant phenotype. The present data extend our current understanding of the implications of endotoxin tolerance. Furthermore, our data suggest that the levels of mitochondrial antigens in plasma, such as plasma mtDNA, should be useful as a marker of increased risk of susceptibility to nosocomial infections in MI and in other pathologies involving tissue damage
Modulation of human monocytes by exposure to mitochondrial DNA.
<p>(<b>A</b>) Workflow diagram: MΦs from HV were pre-exposed to mitochondrial DNA isolated from HeLa (mtDNA, 5 µg/ml, white bars), LPS (10 ng/ml, gray bars) or left untreated (black bars) for 5 days, then stimulated for 24 h with LPS, as described in the scheme. <b>B–F</b>: (<b>B</b>) Protein levels of IL1β, (<b>C</b>) IL6, (<b>D</b>) IL12p70, (<b>E</b>) TNFα and (<b>F</b>) TGF-β in culture supernatants (measured by CBA). Data are shown as Mean±SD, n = 3; *p<0.05,**p<0.01 ***p<0.001; ns: non-significant <i>vs.</i> corresponding control of untreated 5d +LPS stimulus (ANOVA/Dunn). (<b>G and H</b>): Histogram plots of surface HLA-DQ (up) and HLA-DR (down) expression on CD14+ MΦs evaluated by flow cytometry, after 24 h of LPS challenge in MΦs pre-exposed 5 days to mtDNA (left panels) or LPS (right panels), compared to MΦs with no pre-treatment (gray filled, all panels). Mean Fold decrease of MFI compared to corresponding control with no pre-treatment is shown. (<b>I</b>) CD163+CD14+ frequencies in MΦs pre-exposed 5 days to mtDNA (<b>central panel</b>), LPS (<b>right panel</b>) or medium (<b>left panel</b>). Representative dot plots of three independently performed experiments are shown. Values in the upper-left quadrants indicate the Mean frequencies of CD163+CD14+ subsets.</p