5 research outputs found
Murine mesenchymal cells that express elevated levels of the CDK inhibitor p16(Ink4a) <i>in vivo</i> are not necessarily senescent
<p>Age-related health decline has been attributed to the accumulation of senescent cells recognized <i>in vivo</i> by p16(Ink4a) expression. The pharmacological elimination of p16(Ink4a)-positive cells from the tissues of mice was shown to extend a healthy lifespan. Here, we describe a population of mesenchymal cells isolated from mice that are highly p16(INK4a)-positive are proficient in proliferation but lack other properties of cellular senescence. These data, along with earlier reports on p16(Ink4a)-positive macrophages, indicate that p16(Ink4a)-positive and senescent cell populations only partially intersect, therefore, extending the list of potential cellular targets for anti- aging therapies.</p
DNA methylation networks underlying mammalian traits
Using DNA methylation profiles ( = 15,456) from 348 mammalian species, we constructed phyloepigenetic trees that bear marked similarities to traditional phylogenetic ones. Using unsupervised clustering across all samples, we identified 55 distinct cytosine modules, of which 30 are related to traits such as maximum life span, adult weight, age, sex, and human mortality risk. Maximum life span is associated with methylation levels in subclass homeobox genes and developmental processes and is potentially regulated by pluripotency transcription factors. The methylation state of some modules responds to perturbations such as caloric restriction, ablation of growth hormone receptors, consumption of high-fat diets, and expression of Yamanaka factors. This study reveals an intertwined evolution of the genome and epigenome that mediates the biological characteristics and traits of different mammalian species