339 research outputs found

    On the Streets of San Francisco: Highlights from the ISSCR Annual Meeting 2010

    Get PDF
    The 2010 Annual Meeting of the International Society for Stem Cell Research (ISSCR) was held in San Francisco in June with an exciting program covering a wealth of stem cell research from basic science to clinical research

    Generation of Human Female Reproductive Tract Epithelium from Human Embryonic Stem Cells

    Get PDF
    BACKGROUND: Recent studies have identified stem/progenitor cells in human and mouse uterine epithelium, which are postulated to be responsible for tissue regeneration and proliferative disorders of human endometrium. These progenitor cells are thought to be derived from Müllerian duct (MD), the primordial female reproductive tract (FRT). METHODOLOGY/PRINCIPAL FINDINGS: We have developed a model of human reproductive tract development in which inductive neonatal mouse uterine mesenchyme (nMUM) is recombined with green fluorescent protein (GFP)-tagged human embryonic stem cells (hESCs); GFP-hESC (ENVY). We demonstrate for the first time that hESCs can be differentiated into cells with a human FRT epithelial cell phenotype. hESC derived FRT epithelial cells emerged from cultures containing MIXL1(+) mesendodermal precursors, paralleling events occurring during normal organogenesis. Following transplantation, nMUM treated embryoid bodies (EBs) generated epithelial structures with a typical MD phenotype that expressed the MD markers PAX2, HOXA10. Functionally, the hESCs derived FRT epithelium responded to exogenous estrogen by proliferating and secreting uterine-specific glycodelin A (GdA). CONCLUSIONS/SIGNIFICANCE: These data show nMUM can induce differentiation of hESC to form the FRT epithelium. This may provide a model to study early developmental events of the human FRT

    Liver specification of human iPSC-derived endothelial cells transplanted into mouse liver

    Get PDF
    Background & Aims: Liver sinusoidal endothelial cells (LSECs) are important in liver development, regeneration, and pathophysiology, but the differentiation process underlying their tissue-specific phenotype is poorly understood and difficult to study because primary human cells are scarce. The aim of this study was to use human induced pluripotent stem cell (hiPSC)-derived LSEC-like cells to investigate the differentiation process of LSECs. Methods: hiPSC-derived endothelial cells (iECs) were transplanted into the livers of Fah−/−/Rag2−/−/Il2rg−/− mice and assessed over a 12-week period. Lineage tracing, immunofluorescence, flow cytometry, plasma human factor VIII measurement, and bulk and single cell transcriptomic analysis were used to assess the molecular and functional changes that occurred following transplantation. Results: Progressive and long-term repopulation of the liver vasculature occurred as iECs expanded along the sinusoids between hepatocytes and increasingly produced human factor VIII, indicating differentiation into LSEC-like cells. To chart the developmental profile associated with LSEC specification, the bulk transcriptomes of transplanted cells between 1 and 12 weeks after transplantation were compared against primary human adult LSECs. This demonstrated a chronological increase in LSEC markers, LSEC differentiation pathways, and zonation. Bulk transcriptome analysis suggested that the transcription factors NOTCH1, GATA4, and FOS have a central role in LSEC specification, interacting with a network of 27 transcription factors. Novel markers associated with this process included EMCN and CLEC14A. Additionally, single cell transcriptomic analysis demonstrated that transplanted iECs at 4 weeks contained zonal subpopulations with a region-specific phenotype. Conclusions: Collectively, this study confirms that hiPSCs can adopt LSEC-like features and provides insight into LSEC specification. This humanised xenograft system can be applied to further interrogate LSEC developmental biology and pathophysiology, bypassing current logistical obstacles associated with primary human LSECs. Impact and implications: Liver sinusoidal endothelial cells (LSECs) are important cells for liver biology, but better model systems are required to study them. We present a pluripotent stem cell xenografting model that produces human LSEC-like cells. A detailed and longitudinal transcriptomic analysis of the development of LSEC-like cells is included, which will guide future studies to interrogate LSEC biology and produce LSEC-like cells that could be used for regenerative medicine

    Differentiating Embryonic Stem Cells Pass through ‘Temporal Windows’ That Mark Responsiveness to Exogenous and Paracrine Mesendoderm Inducing Signals

    Get PDF
    BACKGROUND: Mesendoderm induction during embryonic stem cell (ESC) differentiation in vitro is stimulated by the Transforming Growth Factor and Wingless (Wnt) families of growth factors. PRINCIPAL FINDINGS: We identified the periods during which Bone Morphogenetic Protein (BMP) 4, Wnt3a or Activin A were able to induce expression of the mesendoderm marker, Mixl1, in differentiating mouse ESCs. BMP4 and Wnt3a were required between differentiation day (d) 1.5 and 3 to most effectively induce Mixl1, whilst Activin A induced Mixl1 expression in ESC when added between d2 and d4, indicating a subtle difference in the requirement for Activin receptor signalling in this process. Stimulation of ESCs with these factors at earlier or later times resulted in little Mixl1 induction, suggesting that the differentiating ESCs passed through 'temporal windows' in which they sequentially gained and lost competence to respond to each growth factor. Inhibition of either Activin or Wnt signalling blocked Mixl1 induction by any of the three mesendoderm-inducing factors. Mixing experiments in which chimeric EBs were formed between growth factor-treated and untreated ESCs revealed that BMP, Activin and Wnt signalling all contributed to the propagation of paracrine mesendoderm inducing signals between adjacent cells. Finally, we demonstrated that the differentiating cells passed through 'exit gates' after which point they were no longer dependent on signalling from inducing molecules for Mixl1 expression. CONCLUSIONS: These studies suggest that differentiating ESCs are directed by an interconnected network of growth factors similar to those present in early embryos and that the timing of growth factor activity is critical for mesendoderm induction

    Enforced Expression of HOXB4 in Human Embryonic Stem Cells Enhances the Production of Hematopoietic Progenitors but Has No Effect on the Maturation of Red Blood Cells

    Get PDF
    We have developed a robust, Good Manufacturing Practice-compatible differentiation protocol capable of producing scalable quantities of red blood cells (RBCs) from human pluripotent stem cells (hPSCs). However, translation of this protocol to the clinic has been compromised because the RBCs produced are not fully mature; thus, they express embryonic and fetal, rather than adult globins, and they do not enucleate efficiently. Based on previous studies, we predicted that activation of exogenous HOXB4 would increase the production of hematopoietic progenitor cells (HPCs) from hPSCs and hypothesized that it might also promote the production of more mature, definitive RBCs. Using a tamoxifen-inducible HOXB4-ERT2 expression system, we first demonstrated that activation of HOXB4 does increase the production of HPCs from hPSCs as determined by colony-forming unit culture activity and the presence of CD43+CD34+ progenitors. Activation of HOXB4 caused a modest, but significant, increase in the proportion of immature CD235a+/CD71+ erythroid cells. However, this did not result in a significant increase in more mature CD235a+/CD71− cells. RBCs produced in the presence of enhanced HOXB4 activity expressed embryonic (ε) and fetal (γ) but not adult (β) globins, and the proportion of enucleated cells was comparable to that of the control cultures. We conclude that programming with the transcription factor HOXB4 increases the production of hematopoietic progenitors and immature erythroid cells but does not resolve the inherent challenges associated with the production of mature adult-like enucleated RBCs

    NKX2-5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network.

    Get PDF
    Congenital heart defects can be caused by mutations in genes that guide cardiac lineage formation. Here, we show deletion of NKX2-5, a critical component of the cardiac gene regulatory network, in human embryonic stem cells (hESCs), results in impaired cardiomyogenesis, failure to activate VCAM1 and to downregulate the progenitor marker PDGFRα. Furthermore, NKX2-5 null cardiomyocytes have abnormal physiology, with asynchronous contractions and altered action potentials. Molecular profiling and genetic rescue experiments demonstrate that the bHLH protein HEY2 is a key mediator of NKX2-5 function during human cardiomyogenesis. These findings identify HEY2 as a novel component of the NKX2-5 cardiac transcriptional network, providing tangible evidence that hESC models can decipher the complex pathways that regulate early stage human heart development. These data provide a human context for the evaluation of pathogenic mutations in congenital heart disease.Nat Commun 2018 Apr 10; 9(1):1373

    INSGFP/w human embryonic stem cells facilitate isolation of in vitro derived insulin-producing cells

    Get PDF
    AIMS/HYPOTHESIS: We aimed to generate human embryonic stem cell (hESC) reporter lines that would facilitate the characterisation of insulin-producing (INS⁺) cells derived in vitro. METHODS: Homologous recombination was used to insert sequences encoding green fluorescent protein (GFP) into the INS locus, to create reporter cell lines enabling the prospective isolation of viable INS⁺ cells. RESULTS: Differentiation of INS(GFP/w) hESCs using published protocols demonstrated that all GFP⁺ cells co-produced insulin, confirming the fidelity of the reporter gene. INS-GFP⁺ cells often co-produced glucagon and somatostatin, confirming conclusions from previous studies that early hESC-derived insulin-producing cells were polyhormonal. INS(GFP/w) hESCs were used to develop a 96-well format spin embryoid body (EB) differentiation protocol that used the recombinant protein-based, fully defined medium, APEL. Like INS-GFP⁺ cells generated with other methods, those derived using the spin EB protocol expressed a suite of pancreatic-related transcription factor genes including ISL1, PAX6 and NKX2.2. However, in contrast with previous methods, the spin EB protocol yielded INS-GFP⁺ cells that also co-expressed the beta cell transcription factor gene, NKX6.1, and comprised a substantial proportion of monohormonal INS⁺ cells. CONCLUSIONS/INTERPRETATION: INS(GFP/w) hESCs are a valuable tool for investigating the nature of early INS⁺ progenitors in beta cell ontogeny and will facilitate the development of novel protocols for generating INS⁺ cells from differentiating hESCs

    Manipulation of Cell:Cell Contacts and Mesoderm Suppressing Activity Direct Lineage Choice from Pluripotent Primitive Ectoderm-Like Cells in Culture

    Get PDF
    In the mammal, the pluripotent cells of embryo differentiate and commit to either the mesoderm/endoderm lineages or the ectoderm lineage during gastrulation. In culture, the ability to direct lineage choice from pluripotent cells into the mesoderm/endoderm or ectoderm lineages will enable the development of technologies for the formation of highly enriched or homogenous populations of cells. Here we show that manipulation of cell:cell contact and a mesoderm suppressing activity in culture affects the outcome of pluripotent cell differentiation and when both variables are manipulated appropriately they can direct differentiation to either the mesoderm or ectoderm lineage. The disruption of cell:cell contacts and removal of a mesoderm suppressor activity results in the differentiation of pluripotent, primitive ectoderm-like cells to the mesoderm lineage, while maintenance of cell:cell contacts and inclusion, within the culture medium, of a mesoderm suppressing activity results in the formation of near homogenous populations of ectoderm. Understanding the contribution of these variables in lineage choice provides a framework for the development of directed differentiation protocols that result in the formation of specific cell populations from pluripotent cells in culture

    Brachyury and Related Tbx Proteins Interact with the Mixl1 Homeodomain Protein and Negatively Regulate Mixl1 Transcriptional Activity

    Get PDF
    Mixl1 is a homeodomain transcription factor required for mesoderm and endoderm patterning during mammalian embryogenesis. Despite its crucial function in development, co-factors that modulate the activity of Mixl1 remain poorly defined. Here we report that Mixl1 interacts physically and functionally with the T-box protein Brachyury and related members of the T-box family of transcription factors. Transcriptional and protein analyses demonstrated overlapping expression of Mixl1 and Brachyury during embryonic stem cell differentiation. In vitro protein interaction studies showed that the Mixl1 with Brachyury associated via their DNA-binding domains and gel shift assays revealed that the Brachyury T-box domain bound to Mixl1-DNA complexes. Furthermore, luciferase reporter experiments indicated that association of Mixl1 with Brachyury and related T-box factors inhibited the transactivating potential of Mixl1 on the Gsc and Pdgfrα promoters. Our results indicate that the activity of Mixl1 can be modulated by protein-protein interactions and that T-box factors can function as negative regulators of Mixl1 activity
    corecore