970 research outputs found

    Modeling cosmic ray anisotropies near 10(18) eV

    Get PDF
    A galactic magnetic field reversal near the Sagittarius spiral arm may be responsible for the southern excess (or northern shortage) of cosmic rays near 10 to the 18th power eV. The north-south asymmetry produced by such a reversal would increase with energy in the same manner as the observed asymmetry. The existence of a reversal has been inferred from analyses of Faraday rotation measures

    Approximation properties of the qq-sine bases

    Full text link
    For q>12/11q>12/11 the eigenfunctions of the non-linear eigenvalue problem associated to the one-dimensional qq-Laplacian are known to form a Riesz basis of L2(0,1)L^2(0,1). We examine in this paper the approximation properties of this family of functions and its dual, in order to establish non-orthogonal spectral methods for the pp-Poisson boundary value problem and its corresponding parabolic time evolution initial value problem. The principal objective of our analysis is the determination of optimal values of qq for which the best approximation is achieved for a given pp problem.Comment: 20 pages, 11 figures and 2 tables. We have fixed a number of typos and added references. Changed the title to better reflect the conten

    Possible Signature of Low Scale Gravity in Ultra High Enegry Cosmic Rays

    Full text link
    We show that the existence of low scale gravity at TeV scale could lead to a direct production of photons with energies above 10^22 eV due to annihilation of ultra high energy neutrinos on relic massive neutrinos of the galactic halo. Air showers initialized in the terrestrial atmosphere by these ultra energetic photons could be collected in near future by the new generation of cosmic ray experiments.Comment: 5 pages, 3 figure

    Limits on deeply penetrating particles in the 10(17) eV cosmic ray flux

    Get PDF
    Deeply penetrating particles in the 10 to the 17th power eV cosmic ray flux were investigated. No such events were found in 8.2 x 10 to the 6th power sec of running time. Limits were set on the following: quark-matter in the primary cosmic ray flux; long-lived, weakly interacting particles produced in p-air collisions; the astrophysical neutrino flux. In particular, the neutrino flux limit at 10 to the 17th power eV implies that z, the red shift of maximum activity is 10 in the model of Hill and Schramm

    Tunable magnetic interaction at the atomic scale in oxide heterostructures

    Full text link
    We report on a systematic study of a number of structurally identical but chemically distinct transition metal oxides in order to determine how the material-specific properties such as the composition and the strain affect the properties at the interface of heterostructures. Our study considers a series of structures containing two layers of ferromagnetic SrRuO3, with antiferromagnetic insulating manganites sandwiched in between. The results demonstrate how to control the strength and relative orientation of interfacial ferromagnetism in correlated electron materials by means of valence state variation and substrate-induced strain, respectively

    On the Origin of the Highest Energy Cosmic Rays

    Get PDF
    We present the results of a new estimation of the photodisintegration and propagation of ultrahigh energy cosmic ray (UHCR) nuclei in intergalactic space. The critical interactions for photodisintegration and energy loss of UHCR nuclei occur with photons of the infrared background radiation (IBR). We have reexamined this problem making use of a new determination of the IBR based on empirical data, primarily from IRAS galaxies, and also collateral information from TeV gamma-ray observations of two nearby BL Lac objects. Our results indicate that a 200 EeV Fe nucleus can propagate apx. 100 Mpc through the IBR. We argue that it is possible that the highest energy cosmic rays observed may be heavy nuclei.Comment: 2 pages revtex with one figure, submitted to Physical Review Letter

    Effect of magnetic order on the superfluid response of single-crystal ErNi2_{2}B2_{2}C: A penetration depth study

    Full text link
    We report measurements of the in-plane magnetic penetration depth Δλ\Delta \lambda (T) in single crystals of ErNi2_{2}B2_{2}C down to \sim0.1 K using a tunnel-diode based, self-inductive technique at 21 MHz. We observe four features: (1) a slight dip in Δλ\Delta \lambda (T) at the Neˊ\acute{e}el temperature TNT_{N} = 6.0 K, (2) a peak at TWFMT_{WFM} = 2.3 K, where a weak ferromagnetic component sets in, (3) another maximum at 0.45 K, and (4) a final broad drop down to 0.1 K. Converting to superfluid density ρs\rho_{s}, we see that the antiferromagnetic order at 6 K only slightly depresses superconductivity. We seek to explain some of the above features in the context of antiferromagnetic superconductors, where competition between the antiferromagnetic molecular field and spin fluctuation scattering determines increased or decreased pairbreaking. Superfluid density data show only a slight decrease in pair density in the vicinity of the 2.3 K feature, thus supporting other evidences against bulk ferromagnetism in this temperature range.Comment: 15 pages, 5 figure

    A depression before a bump in the highest energy cosmic ray spectrum

    Get PDF
    We re-examine the interaction of ultra high energy nuclei with the microwave background radiation. We find that the giant dipole resonance leaves a new signature in the differential energy spectrum of iron sources located around 3 Mpc: A depression before the bump which is followed by the expected cutoff.Comment: revisited version, 5 pages RevTex, 5 figure

    The structure of EAS at E 0.1 EeV

    Get PDF
    The ratio of extensive air showers (EAS) total shower energy in the electromagnetic channel (E em) to the size of the shower at maximum development (N max) from a direct measurement of shower longitudinal development using the air fluorescence technique was calculated. The values are not inconsistent with values based upon track length integrals of the Gaisser-Hillas formula for shower development or the known relation between shower energy and size at maximum for pure electromagnetic cascades. Using Linsley's estimates for undetected shower energy based on an analysis of a wide variety of cosmic ray data, the following relation for total shower energy E vs N max is obtained. The Gaisser Hillas implied undetected shower energy fractions
    corecore