108 research outputs found

    Battle between plants as antioxidants with free radicals in human body

    Get PDF
    Free radicals are constructed by natural physiological activities in the human cells as well as in the environment. They may be produced as a result of diet, smoking, exercise, inflammation, exposure to sunlight, air pollutants, stress, alcohol and drugs. Imbalanced redox status may lead to cellular oxidative stress, which can damage the cells of the body, resulting in an incidence of various diseases. If the endogenous antioxidants do not stop the production of reactive metabolites, they will be needed to bring about a balance in redox status. Natural antioxidants, for example plants, play an important part in this context. This paper seeks to report the available evidence about oxidative stress and the application of plants as antioxidant agents to fight free radicals in the human body. For this purpose, to better understand oxidative stress, the principles of free radical production, the role of free radicals in diseases, antioxidant defense mechanisms, and the role of herbs and diet in oxidative stress are discussed. Keywords: Free radicals, Antioxidant, Plant, Human health, Oxidative stres

    OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution

    Get PDF
    Eukaryotic cells harbor a small multiploid mitochondrial genome, organized in nucleoids spread within the mitochondrial network. Maintenance and distribution of mitochondrial DNA (mtDNA) are essential for energy metabolism, mitochondrial lineage in primordial germ cells, and to prevent mtDNA instability, which leads to many debilitating human diseases. Mounting evidence suggests that the actors of the mitochondrial network dynamics, among which is the intramitochondrial dynamin OPA1, might be involved in these processes. Here, using siRNAs specific to OPA1 alternate spliced exons, we evidenced that silencing of the OPA1 variants including exon 4b leads to mtDNA depletion, secondary to inhibition of mtDNA replication, and to marked alteration of mtDNA distribution in nucleoid and nucleoid distribution throughout the mitochondrial network. We demonstrate that a small hydrophobic 10-kDa peptide generated by cleavage of the OPA1-exon4b isoform is responsible for this process and show that this peptide is embedded in the inner membrane and colocalizes and coimmunoprecipitates with nucleoid components. We propose a novel synthetic model in which a peptide, including two trans-membrane domains derived from the N terminus of the OPA1-exon4b isoform in vertebrates or from its ortholog in lower eukaryotes, might contribute to nucleoid attachment to the inner mitochondrial membrane and promotes mtDNA replication and distribution. Thus, this study places OPA1 as a direct actor in the maintenance of mitochondrial genome integrity

    Modulating mitophagy in mitochondrial disease

    Get PDF
    Mitochondrial diseases may result from mutations in the maternally-inherited mitochondrial DNA (mtDNA) or from mutations in nuclear genes encoding mitochondrial proteins. Their bi-genomic nature makes mitochondrial diseases a very heterogeneous group of disorders that can present at any age and can affect any type of tissue. The autophagic-lysosomal degradation pathway plays an important role in clearing dysfunctional and redundant mitochondria through a specific quality control mechanism termed mitophagy. Mitochondria could be targeted for autophagic degradation for a variety of reasons including basal turnover for recycling, starvation induced degradation, and degradation due to damage. While the core autophagic machinery is highly conserved and common to most pathways, the signaling pathways leading to the selective degradation of damaged mitochondria are still not completely understood. Type 1 mitophagy due to nutrient starvation is dependent on PI3K (phosphoinositide 3-kinase) for autophagosome formation but independent of mitophagy proteins, PINK1 (PTEN-induced putative kinase 1) and Parkin. Whereas type 2 mitophagy that occurs due to damage is dependent on PINK1 and Parkin but does not require PI3K. Autophagy and mitophagy play an important role in human disease and hence could serve as therapeutic targets for the treatment of mitochondrial as well as neurodegenerative disorders. Therefore, we reviewed drugs that are known modulators of autophagy (AICAR and metformin) and may effect this by activating the AMP-activated protein kinase signaling pathways. Furthermore, we reviewed data available on supplements, such as Coenzyme Q and the quinone idebenone, that we assert rescue increased mitophagy in mitochondrial disease by benefiting mitochondrial function

    A neurodegenerative perspective on mitochondrial optic neuropathies

    Get PDF

    OPA1 alternate splicing uncouples an evolutionary conserved function in mitochondrial fusion from a vertebrate restricted function in apoptosis.: OPA1 isoforms in mitochondrial fusion or apoptosis.

    No full text
    In most eucaryote cells, release of apoptotic proteins from mitochondria involves fission of the mitochondrial network and drastic remodelling of the cristae structures. The intramitochondrial dynamin OPA1, as a potential central actor of these processes, exists as eight isoforms resulting from the alternate splicing combinations of exons (Ex) 4, 4b and 5b, which functions remain undetermined. Here, we show that Ex4 that is conserved throughout evolution confers functions to OPA1 involved in the maintenance of the DeltaPsi(m) and in the fusion of the mitochondrial network. Conversely, Ex4b and Ex5b, which are vertebrate specific, define a function involved in cytochrome c release, an apoptotic process also restricted to vertebrates. The drastic changes of OPA1 variant abundance in different organs suggest that nuclear splicing can control mitochondrial dynamic fate and susceptibility to apoptosis and pathologies

    A Mathematical Analysis of Aerobic Glycolysis Triggered by Glucose Uptake in Cones

    No full text
    International audiencePatients affected by retinitis pigmentosa, an inherited retinal disease, experience a decline in vision due to photoreceptor degeneration leading to irreversible blindness. Rod-derived cone viability factor (RdCVF) is the most promising mutation-independent treatment today. To identify pathologic processes leading to secondary cone photoreceptor dysfunction triggering central vision loss of these patients, we model the stimulation by RdCVF of glucose uptake in cones and glucose metabolism by aerobic glycolysis. We develop a nonlinear system of enzymatic functions and differential equations to mathematically model molecular and cellular interactions in a cone. We use uncertainty and sensitivity analysis to identify processes that have the largest effect on the system and their timeframes. We consider the case of a healthy cone, a cone with low levels of glucose, and a cone with low and no RdCVF. The three key processes identified are metabolism of fructose-1,6-bisphosphate, production of glycerol-3-phosphate and competition that rods exert on cone resources. The first two processes are proportional to the partition of the carbon flux between glycolysis and the pentose phosphate pathway or the Kennedy pathway, respectively. The last process is the rods’ competition for glucose, which may explain why rods also provide the RdCVF signal to compensate

    Substitution between Aristolochia and Bryonia genus in North-Eastern Morocco: toxicological implications.

    No full text
    Although acknowledged as toxic herbs, Aristolochia species are still widely used worldwide. The aristolochic acids (AA) they contain can induce the so-called "aristolochic acid nephropathy", leading to renal fibrosis and upper urinary tract cancer. Traditional Moroccan medicine still often uses Aristolochia species under the vernacular name of Bereztem for the treatment of numerous ailments, notably cancer, diabetes or digestive tract disorders. As the botanical identity and renal toxicity of used species remain unexplored, the safety of patients may be threatened.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore