222 research outputs found
Fluid-Structure Interaction Modeling of A F/A-18 Twin-Tail Buffet Using Non-linear Eddy Viscosity Models
When turbulent flow generates unsteady differential pressure over an aircraft\u27s structure, this may generate buffeting, a random oscillation of the structure. The buffet phenomenon is observed on a wide range of fighter aircraft, especially fighters with twin-tail. More research is needed to better understand the physics behind the vortical flow over a delta wing and the subsequent tail buffet.
This dissertation reports the modeling and simulation of a steady-state one-way fluid-structure interaction for the tail buffet problem observed on a F/A-18 fighter. The time-averaged computational results are compared to available experimental data. Next, computations are extended to simulate an unsteady two-way fluid-structure interaction problem of the tail buffet of a F/A-18 fighter.
For the modeling herein, a commercial software ANSYS version 14.0, is employed. For the fluid domain, the unsteady Reynolds-averaged Navier Stokes (URANS) equations with different turbulent models are utilized. The first turbulence model selected is the modified Spalart-Allmaras model (SARRC) with a strain-vorticity based production and curvature treatment. The second turbulence model selected is the Non-linear Eddy Viscosity Model (NLEVM) based on the Wilcox k–ω model. This model uses the formulation of an explicit algebraic Reynolds stress model. The structural simulation is conducted by a finite element analysis model with shell elements. Both SARRC and NLEVM turbulence models are in ANSYS software.
The experimental data used for validation were conducted on a simplified geometry: a 0.3 Mach number flow past a 76-deg delta wing pitched to 30-deg. Two vertical tails were placed downstream of the delta wing.
The present work is the first ever study of the tail buffet problem of the F/A-18 fighter with two-way fluid-structure interaction using the two advanced turbulence models. The steady-state, time-averaged, one-way fluid-structure interaction case of the present investigation indicates that simulations employing the NLEVM and SARRC turbulence models do not match the experimental data. These results are somewhat expected for the steady-state, one-way simulation, because it involves no force and displacement transfer between the fluid and structural domains.
For the unsteady two-way fluid-structure interaction case, both models result in more favorable agreement with the experimental data by optimizing the available computational resources particularly when compared to prior simulations by other researchers. Results from the NLEVM model produce improved pressure predictions on the tail as compared to the results from the SARRC model.
Based on the simulation results, it is concluded that the buffet problem should be simulated as a two-way fluid-structure interaction. The NLEVM turbulence model is recommended in predicting vortical flow characteristics over a delta wing. The NLEVM turbulence model is necessary to predict the pressure distribution not only over the aircraft surface but also the tails since they experience the wake of vortices
Bifunctional supported catalysts for fine chemical synthesis
The objective was to prepare and optimise solid acid and solid base catalysts for liquid phase reactions. The approach has been to functionalize porous silica support materials with acid and base catalytic groups. Solid acid, solid base and bifunctional solid acid/base catalysts were studied. Evidence for acid-base cooperative catalytic mechanisms was found, suggesting that these bifunctional catalysts could show significant advantages over singly functionalized materials of mixtures thereof.
Silicas functionalized with tethered aminopropyl groups were prepared by both a grafting method and a sol–gel method. The solids were fully characterized and were tested in the nitroaldol condensation between nitromethane and benzaldehyde to afford nitrostyrene and the aldol reaction between 4-nitrobenzaldehyde and acetone to afford 4-(4-nitrophenyl)-4-hydroxy-2-butanone. The catalytic activities of these materials were found to be dependent on the dispersion and accessibilities of the active sites which, in turn, depend on the methods utilized for the catalyst preparation.
Solid acid catalysts were prepared by grafting silica with mercaptopropyl-trimethoxysilane (MPTS) followed by oxidation. The influence of the oxidation procedure on the acidity of the catalyst is described. The use of concentrated HNO3 optimizes the oxidation process and increases the concentration of active sites in comparison to H2O2. The activities of these catalysts were tested in the deacetalization of benzaldehyde dimethyl acetal to benzaldehyde.
The use of solid acid and solid base catalysts in the same system was examined, in a two-stage acid-catalyzed deacetalization and base-catalyzed Henry reaction.
Solid bifunctional acid-base catalysts were prepared by grafting on amorphous silica in two ways: 1) by grafting propylsulfonic acid and aminopropyl groups to the silica surface
(NH2-SiO2-SO3H) and 2) by grafting aminopropyl groups and then partially neutralizing with phosphotungstic acid, relying on the H2PW12O40- ion for surface acidity (NH2-SiO2-NH3+[H2PW12O40-]. These two bifunctional catalysts were compared with each other and with the singly functionalised catalysts described above. Surface acidities and basicities were characterized by adsorption calorimetry, using SO2 as a probe for surface basicity and NH3 for surface acidity. Catalytic activities were measured in the tandem deacetalization/Henry reaction described above, and in an aldol reaction in which a cooperative acid-base catalytic mechanism is thought to be effective. Overall NH2-SiO2-SO3H catalysts showed higher concentrations and strengths of both acid and base sites, and higher activities. Both catalysts showed evidence of cooperative acid-base catalytic sites. Even in the deacetalization/Henry reaction, the bifunctional catalysts exhibited a catalytic advantage over physical mixtures of singly functionalized catalysts.
A further bifunctional acid-base catalyst was prepared and studied by tethering proline to silica. In this case, the catalyst was chiral and was tested in the asymmetric aldol reaction between acetone and 4-nitrobenzaldehyde. Grafting methods with and without protecting groups for the active sites on proline were investigated. Remarkably the optimised supported proline catalysts showed higher activities and higher enantioselectivities than proline in homogeneous solution, and showed minimal loss in activity with time. Both activity and enantioselectivity depended strongly on the nature of the reaction solvent
A novel fabrication approach for multifunctional graphene-based thin film nano-composite membranes with enhanced desalination and antibacterial characteristics
A practical fabrication technique is presented to tackle the trade-off between the water flux and salt rejection of thin film composite (TFC) reverse osmosis (RO) membranes through controlled creation of a thinner active selective polyamide (PA) layer. The new thin film nano-composite (TFNC) RO membranes were synthesized with multifunctional poly tannic acid-functionalized graphene oxide nanosheets (pTA-f-GO) embedded in its PA thin active layer, which is produced through interfacial polymerization. The incorporation of pTA-f-GOL into the fabricated TFNC membranes resulted in a thinner PA layer with lower roughness and higher hydrophilicity compared to pristine membrane. These properties enhanced both the membrane water flux (improved by 40%) and salt rejection (increased by 8%) of the TFNC membrane. Furthermore, the incorporation of biocidal pTA-f-GO nanosheets into the PA active layer contributed to improving the antibacterial properties by 80%, compared to pristine membrane. The fabrication of the pTA-f-GO nanosheets embedded in the PA layer presented in this study is a very practical, scalable and generic process that can potentially be applied in different types of separation membranes resulting in less energy consumption, increased cost-efficiency and improved performance.Hanaa M. Hegab, Ahmed ElMekawy, Thomas G. Barclay, Andrew Michelmore, Linda Zou, Dusan Losic, Christopher P. Saint and Milena Ginic-Markovi
Biodegradation of the Alkaline Cellulose Degradation Products Generated during Radioactive Waste Disposal.
The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7×10−2 hr−1 (SE±2.9×10−3). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility
Self-sustainable electricity production from algae grown in a microbial fuel cell system
© 2015 The Authors. This paper describes the potential for algal biomass production in conjunction with wastewater treatment and power generation within a fully biotic Microbial Fuel Cell (MFC). The anaerobic biofilm in the anodic half-cell is generating current, whereas the phototrophic biofilm on the cathode is providing the oxygen for the Oxygen Reduction Reaction (ORR) and forming biomass. The MFC is producing electricity with simultaneous biomass regeneration in the cathodic half-cell, which is dependent on the nutrient value of the anodic feedstock. Growth of algal biomass in the cathode was monitored, assessed and compared against the MFC power production (charge transfer), during this process. MFC generation of electricity activated the cation crossover for the formation of biomass, which has been harvested and reused as energy source in a closed loop system. It can be concluded that the nutrient reclamation and assimilation into new biomass increases the energy efficiency. This work is presenting a simple and self-sustainable MFC operation with minimal dependency on chemicals and an energy generation system utilising waste products and maximising energy turnover through an additional biomass recovery
Towards effective small scale microbial fuel cells for energy generation from urine
© 2016 The Authors. Published by Elsevier Ltd. To resolve an increasing global demand in energy, a source of sustainable and environmentally friendly energy is needed. Microbial fuel cells (MFC) hold great potential as a sustainable and green bioenergy conversion technology that uses waste as the feedstock. This work pursues the development of an effective small-scale MFC for energy generation from urine. An innovative air-cathode miniature MFC was developed, and the effect of electrode length was investigated. Two different biomass derived catalysts were also studied. Doubling the electrode length resulted in the power density increasing by one order of magnitude (from 0.053 to 0.580 W m-3). When three devices were electrically connected in parallel, the power output was over 10 times higher compared to individual units. The use of biomass-derived oxygen reduction reaction catalysts at the cathode increased the power density generated by the MFC up to 1.95 W m-3, thus demonstrating the value of sustainable catalysts for cathodic reactions in MFCs
Improved power and long term performance of microbial fuel cell with Fe-N-C catalyst in air-breathing cathode
© 2017 Power output limitation is one of the main challenges that needs to be addressed for full-scale applications of the Microbial Fuel Cell (MFC) technology. Previous studies have examined electrochemical performance of different cathode electrodes including the development of novel iron based electrocatalysts, however the long-term investigation into continuously operating systems is rare. This work aims to study the application of platinum group metals-free (PGM-free) catalysts integrated into an air-breathing cathode of the microbial fuel cell operating on activated sewage sludge and supplemented with acetate as the carbon energy source. The maximum power density up to 1.3 Wm−2 (54 Wm−3) obtained with iron aminoantipyrine (Fe-AAPyr) catalyst is the highest reported in this type of MFC and shows stability and improvement in long term operation when continuously operated on wastewater. It also investigates the ability of this catalyst to facilitate water extraction from the anode and electroosmotic production of clean catholyte. The electrochemical kinetic extraction of catholyte in the cathode chamber shows correlation with power performance and produces a newly synthesised solution with a high pH > 13, suggesting caustic content. This shows an active electrolytic treatment of wastewater by active ionic and pH splitting in an electricity producing MFC
Sustainable Waste-to-Energy Technologies: Bioelectrochemical Systems
The food industry produces a large amount of waste and wastewater, of which most of the constituents are carbohydrates, proteins, lipids, and organic fibers. Therefore food wastes are highly biodegradable and energy rich. Bioelectrochemical systems (BESs) are systems that use microorganisms to biochemically catalyze complex substrates into useful energy products, in which the catalytic reactions take place on electrodes. Microbial fuel cells (MFCs) are a type of bioelectrochemical systems that oxidize substrates and generate electric current. Microbial electrolysis cells (MECs) are another type of bioelectrochemical systems that use an external power source to catalyze the substrate into by-products such as hydrogen gas, methane gas, or hydrogen peroxide. BESs are advantageous due to their ability to achieve a degree of substrate remediation while generating energy. This chapter presents an extensive literature review on the use of MFCs and MECs to remediate and recover energy from food industry waste. These bioelectrochemical systems are still in their infancy state and further research is needed to better understand the systems and optimize their performance. Major challenges and limitations for the use of BESs are summarized and future research needs are identified
Microbial fuel cells: From fundamentals to applications. A review
© 2017 The Author(s) In the past 10–15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described
- …