15 research outputs found

    Drought-Tolerant Bacteria and Arbuscular Mycorrhizal Fungi Mitigate the Detrimental Effects of Drought Stress Induced by Withholding Irrigation at Critical Growth Stages of Soybean (<i>Glycine max</i>, L.)

    No full text
    Considering current global climate change, drought stress is regarded as a major problem negatively impacting the growth of soybeans, particularly at the critical stages R3 (early pod) and R5 (seed development). Microbial inoculation is regarded as an ecologically friendly and low-cost-effective strategy for helping soybean plants withstand drought stress. The present study aimed to isolate newly drought-tolerant bacteria from native soil and evaluated their potential for producing growth-promoting substances as well as understanding how these isolated bacteria along with arbuscular mycorrhizal fungi (AMF) could mitigate drought stress in soybean plants at critical growth stages in a field experiment. In this study, 30 Bradyrhizobium isolates and 30 rhizobacterial isolates were isolated from the soybean nodules and rhizosphere, respectively. Polyethylene glycol (PEG) 6000 was used for evaluating their tolerance to drought, and then the production of growth promotion substances was evaluated under both without/with PEG. The most effective isolates (DTB4 and DTR30) were identified genetically using 16S rRNA gene. A field experiment was conducted to study the impact of inoculation with DTB4 and DTR30 along with AMF (Glomus clarum, Funneliformis mosseae, and Gigaspora margarita) on the growth and yield of drought-stressed soybeans. Our results showed that the bioinoculant applications improved the growth traits (shoot length, root length, leaf area, and dry weight), chlorophyll content, nutrient content (N, P, and K), nodulation, and yield components (pods number, seeds weight, and grain yield) of soybean plants under drought stress (p ≤ 0.05). Moreover, proline contents were decreased due to the bioinoculant applications under drought when compared to uninoculated treatments. As well as the count of bacteria, mycorrhizal colonization indices, and the activity of soil enzymes (dehydrogenase and phosphatase) were enhanced in the soybean rhizosphere under drought stress. This study’s findings imply that using a mixture of bioinoculants may help soybean plants withstand drought stress, particularly during critical growth stages, and that soybean growth, productivity, and soil microbial activity were improved under drought stress

    Arbuscular mycorrhizae mitigate aluminum toxicity and regulate proline metabolism in plants grown in acidic soil

    No full text
    Arbuscular mycorrhizal fungi (AMF) can promote plant growth and induce stress tolerance. Proline is reported to accumulate in mycorrhizal plants under stressful conditions, such as aluminum (Al) stress. However, the detailed changes induced in proline metabolism under AMF–plant symbiosis has not been studied. Accordingly, this work aimed to study how Al-stressed grass (barley) and legume (lotus) species respond to AMF inoculation at growth and biochemical levels. The associated changes in Al uptake and accumulation, the rate of photosynthesis, and the key enzymes and metabolites involved in proline biosynthesis and degradation pathways were studied. Soil contamination with Al induced Al accumulation in tissues of both species and, consequently, reduced plant growth and the rate of photosynthesis, while more tolerance was noticed in lotus. Inoculation with AMF significantly reduced Al accumulation and mitigated the negative impacts of Al on growth and photosynthesis in both species; however, these positive effects were more pronounced in barley plants. The mitigating action of AMF was associated with upregulation of proline biosynthesis through glutamate and ornithine pathways, more in lotus than in barley, and repression of its catabolism. The increased proline level in lotus was consistent with improved N metabolism (N level and nitrate reductase). Overall, this study suggests the role of AMF in mitigating Al stress, where regulation of proline metabolism is a worthy mechanism underlying this mitigating action

    The Integration of Bio and Organic Fertilizers Improve Plant Growth, Grain Yield, Quality and Metabolism of Hybrid Maize (Zea mays L.)

    No full text
    Expanding eco-friendly approaches to improve plant growth and crop productivity is of great important for sustainable agriculture. Therefore, a field experiment was carried out at the Faculty of Agriculture Farm, Mansoura University, Egypt during the 2018 and 2019 growing seasons to study the effects of different bio- and organic fertilizers and their combination on hybrid maize growth, yield, and grain quality. Seeds were treated with Azotobacter chrocoocum, arbuscular mycorrhizal fungi (AMF), Bacillus circulans, biogas slurry, humic acid (HA), and their combination aiming to increase the growth and yield of maize and to reduce the need for chemical fertilizers. The results showed that combined application of the biofertilizer mixture (Azotobacter chrocoocum, AMF, and Bacillus circulans) with organic fertilizers enhanced maize growth, yield, and nutrient uptake. Moreover, the bio-organic fertilization has improved the soluble sugars, starch, carbohydrates, protein, and amino acid contents in maize seeds. Additionally, the bio-organic fertilization caused an obvious increase in the microbial activity by enhancing acid phosphatase and dehydrogenase enzymes, bacterial count, and mycorrhizal colonization levels in maize rhizosphere as compared with the chemical fertilization. Additionally, the bio-organic fertilizers has improved &alpha;-amylase and gibberellins (GA) activities and their transcript levels, as well as decreased the abscisic acid (ABA) level in the seeds as compared to the chemical fertilizers. The obtained results of bio-organic fertilization on the growth parameters and yield of maize recommend their use as an alternative tool to reduce chemical fertilizers

    Metabolic profiling analysis uncovers the role of carbon nanoparticles in enhancing the biological activities of amaranth in optimal salinity conditions

    No full text
    Abstract: Enhancing the productivity and bioactivity of high-functional foods holds great significance. Carbon nanoparticles (CNPs) have a recognized capacity for boosting both plant growth and the efficacy of primary and secondary metabolites. Furthermore, while salinity diminishes plant growth, it concurrently amplifies the production of phytomolecules. To ensure the robust and sustainable production of nutritious food, it becomes essential to elevate biomolecule yield without compromising plant growth. Here, we assessed the CNPs priming on plant performance and metabolites of the glycophyte amaranth (Amaranthus hypochondriacus) sprouts at the threshold salinity (25 mM NaCl; i.e., salinity that does not reduce growth but enhances the metabolites of that plant). We measured growth parameters, pigment levels, and primary (carbohydrates, amino acids, organic acids, fatty acids) and secondary metabolites (phenolics, flavonoids, tocopherols). CNP priming significantly improved biomass accumulation (fresh and dry weight) and primary and secondary metabolites of amaranth sprouts. Increased photosynthetic pigments can explain these increases in photosynthesis. Enhanced photosynthesis induced carbohydrate production, providing a C source for producing bioactive primary and secondary metabolites. The priming effect of CNPs further enhanced the accumulation of essential amino acids, organic acids, unsaturated fatty acids, tocopherols, and phenolics at threshold salinity. The increase in bioactive metabolites under threshold salinity can explain the CNP priming impact on boosting the antioxidant activities (FRAP, DPPH, anti-lipid peroxidation, superoxide-anion-scavenger, hydroxyl-radical-scavenger, Fe-chelating and chain-breaking activity in aqueous and lipid phases) and antimicrobial activities against Gram-positive and Gram-negative bacteria and fungi. Overall, this study suggested that threshold salinity and CNP priming could be useful for enhancing amaranth sprouts' growth and nutritional quality

    Inoculation with Bacillus amyloliquefaciens and mycorrhiza confers tolerance to drought stress and improve seed yield and quality of soybean plant

    No full text
    The present study aimed to evaluate the effect of Bacillus amyloliquefaciens and/or Arbuscular Mycorrhizal Fungi (AMF) as natural biofertilizers on biomass, yield, and seed nutritive quality of soybean (Giza 111). The conditions investigated include a well-watered (WW) control and irrigation withholding at the seed development stage (R5, after 90 days from sowing) (DS). Co-inoculation with B. amyloliquefaciens and AMF, resulted in the highest plant biomass and yield under WW and DS conditions. The nuclear DNA content analysis suggested that co-inoculation with B. amyloliquefaciens and AMF decreased the inhibition of drought stress on both the size and granularity of seed cells, which were comparable to the normal level. The single or co-inoculation with B. amyloliquefaciens and AMF increased the primary metabolites content and alleviated the drought-induced reduction in soluble sugars, lipids, protein and oil contents. Plant inoculation induced the expression of genes involved in lipid and protein biosynthesis, whereas an opposite trend was observed for genes involved in lipid and protein degradation, supporting the observed increase in lipid and protein content. Plant inoculated with B. amyloliquefaciens showed the highest α-amylase and β-amylase activities, indicating improved osmolyte (soluble sugar) synthesis, particularly under drought. Interestingly, single or co-inoculation further strengthen the positive effect of drought on the antioxidant and osmoprotectant levels, i.e. phenol, flavonoid, glycine betaine contents, and glutathione-S-transferase (GST) activity. As a result of stress release, there was a decrease in the level of stress hormones (abscisic acid, ABA) and an increase in gibberellin (GA), trans-zeatin-riboside (ZR), and indole acetic acid (IAA) in the seeds of inoculated plants. Additionally, the ATP content, hydrolytic activities of plasma membrane H+ -ATPase, Ca2+ -ATPase, and Mg2+ -ATPase were also increased by the inoculation

    Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria Enhance Soil Key Enzymes, Plant Growth, Seed Yield, and Qualitative Attributes of Guar

    No full text
    Guar is an economically important legume crop that is used for gum production. The clean and sustainable production of guar, especially in newly reclaimed lands, requires biofertilizers that can reduce the use of mineral fertilizers, which have harmful effects on human health and the environment. The present study was conducted to investigate the effects of biofertilizers produced from Bradyrhizobium sp., Bacillus subtilis, and arbuscular mycorrhizal fungi (AMF), individually or in combinations, on microbial activity, and nutrients of the soils and the guar growth and seed quality and yield. The application of biofertilizers improved shoot length, root length, number of branches, plant dry weight, leaf area index (LAI), chlorophyll content, and nutrient uptake of guar plants compared with the control plants. Moreover, the application with biofertilizers resulted in an obvious increase in seed yield and has improved the total proteins, carbohydrates, fats, starch, and guaran contents in the seeds. Additionally, biofertilizer treatments have improved the soil microbial activity by increasing dehydrogenase, phosphatase, protease, and invertase enzymes. Soil inoculation with the optimized doses of biofertilizers saved about 25% of the chemical fertilizers required for the entire guar growth stages. Our results could serve as a practical strategy for further research into integrated plant-microbe interaction in agriculture

    Inoculation with Bacillus amyloliquefaciens

    No full text
    The present study aimed to evaluate the effect of Bacillus amyloliquefaciens and/or Arbuscular Mycorrhizal Fungi (AMF) as natural biofertilizers on biomass, yield, and seed nutritive quality of soybean (Giza 111). The conditions investigated include a well-watered (WW) control and irrigation withholding at the seed development stage (R5, after 90 days from sowing) (DS). Co-inoculation with B. amyloliquefaciens and AMF, resulted in the highest plant biomass and yield under WW and DS conditions. The nuclear DNA content analysis suggested that co-inoculation with B. amyloliquefaciens and AMF decreased the inhibition of drought stress on both the size and granularity of seed cells, which were comparable to the normal level. The single or co-inoculation with B. amyloliquefaciens and AMF increased the primary metabolites content and alleviated the drought-induced reduction in soluble sugars, lipids, protein and oil contents. Plant inoculation induced the expression of genes involved in lipid and protein biosynthesis, whereas an opposite trend was observed for genes involved in lipid and protein degradation, supporting the observed increase in lipid and protein content. Plant inoculated with B. amyloliquefaciens showed the highest α-amylase and β-amylase activities, indicating improved osmolyte (soluble sugar) synthesis, particularly under drought. Interestingly, single or co-inoculation further strengthen the positive effect of drought on the antioxidant and osmoprotectant levels, i.e. phenol, flavonoid, glycine betaine contents, and glutathione-S-transferase (GST) activity. As a result of stress release, there was a decrease in the level of stress hormones (abscisic acid, ABA) and an increase in gibberellin (GA), trans-zeatin-riboside (ZR), and indole acetic acid (IAA) in the seeds of inoculated plants. Additionally, the ATP content, hydrolytic activities of plasma membrane H+ -ATPase, Ca2+ -ATPase, and Mg2+ -ATPase were also increased by the inoculation

    Funneliformis constrictum modulates polyamine metabolism to enhance tolerance of Zea mays L. to salinity

    No full text
    The mechanisms underlie increased stress tolerance in plants of salinity stress in plants by arbuscular mycorrhizal fungi (AMF) are poorly understood, particularly the role of polyamine metabolism. The current study was conducted to investigate how inoculation with the AMF, Funneliformis constrictum, affects maize plant tolerance to salt stress. To this end, we investigated the changes in photosynthesis, redox status, primary metabolites (amino acids) and secondary metabolism (phenolic and polyamine metabolism). Control and inoculated maize plants were grown using different concentrations of diluted seawater (0%, 10%, 20% and 40%). Results revealed that treatment with 10% seawater had a beneficial effect on AMF and its host growth. However, irrigation with 20% and 40% significantly reduced plant growth and biomass. As seawater concentration increased, the plants' reliance on mycorrhizal fungi increased resulting in enhanced growth and photosynthetic pigments contents. Under higher seawater concentrations, inoculation with AMF reduced salinity induced oxidative stress and supported redox homeostasis by reducing H2O2 and MDA levels as well as increasing antioxidant-related enzymes activities (e.g., CAT, SOD, APX, GPX, POX, GR, and GSH). AMF inoculation increased amino acid contents in shoots and roots under control and stress conditions. Amino acids availability provides a route for polyamines biosynthesis, where AMF increased polyamines contents (Put, Spd, Spm, total Pas) and their metabolic enzymes associated (ADC, SAMDC, Spd synthase, and Spm synthase), particularly under 40% seawater irrigation. Consistently, the transcription of genes, involved in polyamine metabolism was also up regulated in salinity-stressed plants. AMF further increased the expression in genes involved in polyamine biosynthesis (ODC, SAMDC, SPDS2 and decreased expression of those in catabolic biosynthesis (ADC and PAO). Overall, inoculation with Funneliformis constrictum could be adopted as a practical strategy to alleviate salinity stress
    corecore