13 research outputs found
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.
Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
Comparative Performance Evaluation of FilmArray BioFire RP2.1 and MAScIR 2.0 Assays for SARS-CoV-2 Detection
Background. RT-PCR is the gold standard for COVID-19 diagnosis, but the lack of standardization of assays, whose diagnostic performance may widely vary, complicates the interpretation of the discrepancies that may be encountered. Study design. We conducted a retrospective study over a ten-month period at the Central Laboratory of Virology of Ibn Sina University Hospital of Rabat. We included nasopharyngeal swabs, positive and negative for SARS-CoV-2 on FilmArray BioFire® Respiratory Panel 2.1 Plus, which were subjected to our laboratory’s reference test, MAScIR SARS-CoV-2 M kit 2.0, initially or after a freeze-thaw cycle. The results were compared, and each discrepant sample with sufficient volume underwent the third test, using ARGENE® SARS-CoV-2 R-GENE kit. Results. Of 80 SARS-CoV-2 negative samples on FilmArray, there were no discordant results, whereas of 80 SARS-CoV-2 positive samples on FilmArray, 21 had discordant results on MAScIR, and only 11 could be tested on ARGENE, revealing positive results in 6 cases. 12.7% and 76.5% correspond to the discordance rates for MAScIR (with one or both targets detected on FilmArray), while 14.3% and 100% correspond to those of ARGENE. As the estimated sensitivity and specificity of FilmArray, compared with MAScIR, were 100% and 79.2%, respectively, its lower limit of detection, and ARGENE assay results, made it difficult to distinguish between false positives on FilmArray and false negatives on MAScIR without further investigations. Conclusion. The implementation of a new assay in our laboratory revealed discrepancies suggesting a lack of sensitivity of our laboratory’s reference test, leading us consequently to retain the SARS-CoV-2 positive result of these discordant samples on FilmArray, regardless of the detection of one or both targets. Our study, which is, to our knowledge, the first comparing FilmArray RP2.1 and MAScIR 2.0 assays for SARS-CoV-2 detection, highlights the urgent need to standardize RT-PCR assays for COVID-19 diagnosis
Comparative Performance Evaluation of FilmArray BioFire RP2.1 and MAScIR 2.0 Assays for SARS-CoV-2 Detection
Background. RT-PCR is the gold standard for COVID-19 diagnosis, but the lack of standardization of assays, whose diagnostic performance may widely vary, complicates the interpretation of the discrepancies that may be encountered. Study design. We conducted a retrospective study over a ten-month period at the Central Laboratory of Virology of Ibn Sina University Hospital of Rabat. We included nasopharyngeal swabs, positive and negative for SARS-CoV-2 on FilmArray BioFire® Respiratory Panel 2.1 Plus, which were subjected to our laboratory’s reference test, MAScIR SARS-CoV-2 M kit 2.0, initially or after a freeze-thaw cycle. The results were compared, and each discrepant sample with sufficient volume underwent the third test, using ARGENE® SARS-CoV-2 R-GENE kit. Results. Of 80 SARS-CoV-2 negative samples on FilmArray, there were no discordant results, whereas of 80 SARS-CoV-2 positive samples on FilmArray, 21 had discordant results on MAScIR, and only 11 could be tested on ARGENE, revealing positive results in 6 cases. 12.7% and 76.5% correspond to the discordance rates for MAScIR (with one or both targets detected on FilmArray), while 14.3% and 100% correspond to those of ARGENE. As the estimated sensitivity and specificity of FilmArray, compared with MAScIR, were 100% and 79.2%, respectively, its lower limit of detection, and ARGENE assay results, made it difficult to distinguish between false positives on FilmArray and false negatives on MAScIR without further investigations. Conclusion. The implementation of a new assay in our laboratory revealed discrepancies suggesting a lack of sensitivity of our laboratory’s reference test, leading us consequently to retain the SARS-CoV-2 positive result of these discordant samples on FilmArray, regardless of the detection of one or both targets. Our study, which is, to our knowledge, the first comparing FilmArray RP2.1 and MAScIR 2.0 assays for SARS-CoV-2 detection, highlights the urgent need to standardize RT-PCR assays for COVID-19 diagnosis.</jats:p
Genotypic diversity of multi- and pre-extremely drug-resistant Mycobacterium tuberculosis isolates from Morocco
In Morocco, the prevalence of multidrug resistant tuberculosis (MDR-TB) continues to increase especially within previously treated cases; these MDR cases may evolve to extensively drug resistant tuberculosis (XDR-TB) raising major concern to TB control programs. From an epidemiological window, scarce informations are available about the genetic diversity of Mycobacterium tuberculosis (MTB) strains fueling these forms of resistance. The aim of this study was to assess to genetic diversity of MDR-MTB strains. Hence, this prospective study was conducted on patients diagnosed with MDR-TB at Pasteur Institute of Casablanca from 2010 to 2013. A total of 70 MDR-MTB isolates were genotyped by spoligotyping and 15-loci MIRU-VNTR methods. Spoligotyping generated four orphan patterns, five unique profiles whereas 61 strains were grouped in nine clusters (2 to 25 strains per cluster), the clustering rates being 87.1%. Subtyping by 15 loci MIRU-VNTR splitted all clusters already established by spoligotyping and generated 70 unique profiles not recognized in SITVIT2 database; clustering rate was equal to zero. HGDI analysis of 15 loci MIRU demonstrated that eight out of 15 loci were highly discriminant. Of note, all pre-XDR strains belongs to many clades, meaning that there no association between gyrA mutants and particular clade. Overall, the data generated by this study (i) describe the population structure of MDR MTBC in Morocco which is highly homogenous, (ii) confirm that TB in Morocco is almost exclusively transmitted by modern and evolutionary lineages with high level of biodiversity seen by MIRU, and (iii) validate the use of optimized 15-loci MIRU-VNTR format for future investigations in Morocco.</jats:p
Evaluation of the MAScIR SARS-CoV-2 M Kit 2.0 on the SARS-CoV-2 Infection
SARS-CoV-2 is a major public health problem worldwide. Since its emergence, several diagnostic kits have been developed to ensure rapid patient management. The aim of our study is to check the performance of the new Moroccan SARS-CoV-2 detection kit: MAScIR SARS-CoV-2 M 2.0. The following parameters were studied: repeatability, reproducibility, analytical specificity, analytical sensitivity, and comparison with the GeneFinder™ COVID-19 Plus RealAmp Kit. In addition, an external quality evaluation comprising five specimens was carried out as part of an international program for the external quality evaluation of sublaboratories of the WHO and the Laboratory Office of the National Institute of Hygiene of Morocco. The results of all parameters studied showed an analytical performance that complied with the requirements of the method verification/validation protocol adopted by the Central Laboratory of Virology and met the recommendations of COFRAC (French Accreditation Committee). During the current study, the sequencing of some randomly selected positive samples was performed, among which the carriers of the Alpha variant, the Delta variant, and the Omicron variant were detected. These results allowed us to deduce that this kit was valid for detecting these three variants.</jats:p
Evaluation of the MAScIR SARS-CoV-2 M Kit 2.0 on the SARS-CoV-2 Infection
SARS-CoV-2 is a major public health problem worldwide. Since its emergence, several diagnostic kits have been developed to ensure rapid patient management. The aim of our study is to check the performance of the new Moroccan SARS-CoV-2 detection kit: MAScIR SARS-CoV-2 M 2.0. The following parameters were studied: repeatability, reproducibility, analytical specificity, analytical sensitivity, and comparison with the GeneFinder™ COVID-19 Plus RealAmp Kit. In addition, an external quality evaluation comprising five specimens was carried out as part of an international program for the external quality evaluation of sublaboratories of the WHO and the Laboratory Office of the National Institute of Hygiene of Morocco. The results of all parameters studied showed an analytical performance that complied with the requirements of the method verification/validation protocol adopted by the Central Laboratory of Virology and met the recommendations of COFRAC (French Accreditation Committee). During the current study, the sequencing of some randomly selected positive samples was performed, among which the carriers of the Alpha variant, the Delta variant, and the Omicron variant were detected. These results allowed us to deduce that this kit was valid for detecting these three variants
Epidemiological, Biological, and Clinical Characteristics of Central Nervous System Enterovirus Infections Among Hospitalized Patients at Ibn Sina University Hospital Center in Rabat: Case Study Report (A Series of 19 Cases)
Enterovirus can cause central nervous system (CNS) infections ranging from meningitis to severe encephalitis. The aims of our study were to describe and develop the current epidemiological, biological, and clinical aspects of these infections as well as to enrich Moroccan data. This is a retrospective study conducted from January 2021 to March 2023, which included all patients admitted to the hospitals of Ibn Sina University Hospital Center in Rabat (Morocco) with clinical suspicion of CNS infection and positive cerebrospinal fluid (CSF) for enterovirus detected by BioFire® FilmArray® panel meningitis/encephalitis. 1479 CSF were analyzed by multiplex PCR. Enterovirus was detected in 19 patients (1.28%) with a median age of 5 years, predominantly affecting male patients (73.7%) and children (94.7%), especially those aged 2 years and older (68.4%). Fever was the most common symptom (77.8%), followed by headache (66.7%). The seasonal peak of enterovirus detection was also observed. For most patients, the CSF was predominantly lymphocytic (88.2%) with normal glycorrhachia (84.2%) and proteinorachia (73.7%). A notable proportion (10.5%) had a normal CSF cytology. Hyperproteinorachia was found in 26.3% of cases and hypoglycorrhachia in 5.3%. Blood analysis revealed a normal WBC count in 55.6% of cases, hyperleukocytosis in 33.3%, and leukopenia in 11.1%. CRP was elevated in 72.2% of cases. CNS enterovirus infections were particularly present among the pediatric population in this study. The lack of specificity in clinical and biological manifestations may sometimes suggest bacterial etiology. The widespread use of multiplex PCR can therefore provide a reliable and rapid method of detection and diagnosis
