82 research outputs found

    Prevalence and antimicrobial sensitivity of Escherichia coli and Salmonella species in field cases of rabbit intestinal coccidiosis treated with prebiotic

    Get PDF
    This study aimed to investigate the effect of prebiotic treatment on E. coli and Salmonella species during natural intestinal coccidiosis in rabbits. The experiment was conducted on 45 selected farm rabbits of which 15 were coccidian free (Negative control; NC, group) and 30 were naturally coccidian infected. The infected animals were allocated into two equal groups including positive control (PC) and prebiotic treated (PT) that were orally treated with prebiotic for 8 successive days. Fecal oocyst count was assessed daily during the course of treatment. Meanwhile, the PC group had a significantly high oocyst count (21.67×103 ± 0.82 OPG), with a significant increase in the prevalence of E. coli and Salmonella (86.7 % and 46.7 %, respectively). Moreover, the NC group remained coccidian free and exhibited E. coli infection only with no detection of salmonella isolates. Findings of in-vitro susceptibility testing showed that E. coli isolates were highly resistant to most of the tested antimicrobials while Salmonella isolates showed variable degrees of resistance. In conclusion, the prebiotic treatment significantly reduced the prevalence of E. coli and Salmonella infections coexisted with intestinal coccidiosis in naturally infected rabbits

    Effectiveness of instructional design framework based on cognitive load theory for clinical skills training

    Get PDF
    Purpose: Cognitive load theory (CLT) is receiving increased recognition in medical education and it was cited as an important theoretical framework for simulation-based medical education. Simulated learning environments can place a high demand on the cognitive resources of the learners, hence, we aimed to design an instructional framework to optimise the total cognitive load imposed on the medical students during their clinical skills training in the clinical skills laboratory. Method: This study is a quasi-experimental post-test design. The sampling technique was purposive sampling, which included year 2 students at the Faculty of Medicine-Suez Canal University population. The study was conducted in the clinical skills and simulation laboratory. The intervention group received a developed instructional design framework based on CLT. The control group learned with the ordinary teaching method without any intervention. The cognitive load was measured using the Cognitive Load Inventory (CLI) immediately after the training session for both groups. Furthermore, students’ achievement in the clinical skill laboratory was compared in both groups. Findings: The total cognitive load is lower in the group that received the developed instructional design than that of the control group, and this result was statistically significant. Also, the performance of the intervention group is higher than in the control group. Implications for research and practice: The developed instructional design framework is a potentially useful guide for managing students' cognitive load in the clinical skills training session

    Perspective Chapter: The Toxic Silver (Hg)

    Get PDF
    In the late 1950s, residents of a Japanese fishing village known as “Minamata” began falling ill and dying at an alarming rate. The Japanese authorities stated that methyl-mercury-rich seafood and shellfish caused the sickness. Burning fossil fuels represent ≈52.7% of Hg emissions. The majorities of mercury’s compounds are volatile and thus travel hundreds of miles with wind before being deposited on the earth’s surface. High acidity and dissolved organic carbon increase Hg-mobility in soil to enter the food chain. Additionally, Hg is taken up by areal plant parts via gas exchange. Mercury has no identified role in plants while exhibiting high affinity to form complexes with soft ligands such as sulfur and this consequently inactivates amino acids and sulfur-containing antioxidants. Long-term human exposure to Hg leads to neurotoxicity in children and adults, immunological, cardiac, and motor reproductive and genetic disorders. Accordingly, remediating contaminated soils has become an obligation. Mercury, like other potentially toxic elements, is not biodegradable, and therefore, its remediation should encompass either removal of Hg from soils or even its immobilization. This chapter discusses Hg’s chemical behavior, sources, health dangers, and soil remediation methods to lower Hg levels

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    High throughput laser-induced fluorescence droplet micro-thermometry

    No full text
    International audienceThis paper assesses a new temperature measurement method at the micro-scale at high throughput. This non-invasive method is based on laser-induced fluorescence of highly monodisperse dye-doped flowing microdroplets in microfluidic channels. Laser-Induced-Fluorescence (LIF) of two thermo-responsive dyes (Rhodamine B and rhodamine 110) enables temperature sensing in real-time at high acquisition rates. A single excitation with a 532 nm laser shows satisfying fluorescent emission with no absorption overlap. The emission signals from both dyes are analyzed, and the ratio of both fluorescence intensities shows a-1.4% variation per degree, similar to our observations with dissolved dyes in a single phase microfluidic flow. The ratiometric computational method gives similar results for two droplet sizes, underlining the method's versatility for various microchannel sizes. The thermal evolution of microdroplets' inner temperature is evaluated throughout a cooling of the microfluidic chip, allowing the study of heat exchanges at the droplet microscale
    corecore