65 research outputs found

    Bulk High-Temperature Superconductors: Simulation of Electromagnetic Properties

    Get PDF
    The chapter deals with the electromagnetic properties of bulk high-temperature superconductors (HTSs), which can be used in magnetic systems for various applications, in particular, in contactless magnetic suspensions. Magnetic levitation in HTS material has a different nature from permanent magnets. It is caused by induced superconducting currents inside the volume of material. Due to this, the levitation is self-stabilizing and does not require additional active control or mechanical stops in magnetic systems with HTS. HTS materials have nonlinear, anisotropic, hysteresis properties, which make the calculation of the superconducting devices very difficult. Here you can find a brief overview of existing approaches to modeling HTS materials by E-J characteristics. Authors propose the method of simulation intending for 3D numerical calculation, which represents the processes in HTS using two types of magnetic field sources – current and magnetization. The chapter focuses on the analysis of sources inside the superconducting material and their influence on an external magnetic field and levitation properties of HTS. In addition to simulations, the experimental studies of the force interactions between HTS bulks and permanent magnet are presented and compared with the calculations to verify the proposed mathematical models

    Synthetic BSA-conjugated disaccharide related to the Streptococcus pneumoniae serotype 3 capsular polysaccharide increases IL-17A Levels, γδ T cells, and B1 cells in mice

    Get PDF
    The disaccharide (β-D-glucopyranosyluronic acid)-(1→4)-β-D-glucopyranoside represents a repeating unit of the capsular polysaccharide of Streptococcus pneumoniae serotype 3. A conjugate of the disaccharide with BSA (di-BSA conjugate) adjuvanted with aluminum hydroxide induced — in contrast to the non-adjuvanted conjugate — IgG1 antibody production and protected mice against S. pneumoniae serotype 3 infection after intraperitoneal prime-boost immunization. Adjuvanted and non-adjuvanted conjugates induced production of Th1 (IFNγ, TNFα); Th2 (IL-5, IL-13); Th17 (IL-17A), Th1/Th17 (IL-22), and Th2/Th17 cytokines (IL-21) after immunization. The concentration of cytokines in mice sera was higher in response to the adjuvanted conjugate, with the highest level of IL-17A production after the prime and boost immunizations. In contrast, the non-adjuvanted conjugate elicited only weak production of IL-17A, which gradually decreased after the second immunization. After boost immunization of mice with the adjuvanted di-BSA conjugate, there was a significant increase in the number of CD45+/CD19+ B cells, TCR+ γδ T cell, CD5+ В1 cells, and activated cells with MHC II+ expression in the spleens of the mice. IL-17A, TCR+ γδ T cells, and CD5+ В1 cells play a crucial role in preventing pneumococcal infection, but can also contribute to autoimmune diseases. Immunization with the adjuvanted and non-adjuvanted di-BSA conjugate did not elicit autoantibodies against double-stranded DNA targeting cell nuclei in mice. Thus, the molecular and cellular markers associated with antibody production and protective activity in response to immunization with the di-BSA conjugate adjuvanted with aluminum hydroxide are IL-17A, TCR+ γδ T cells, and CD5+ В1 cells against the background of increasing MHC II+ expression

    Use of a Molecular Diagnostic Test in AFB Smear Positive Tuberculosis Suspects Greatly Reduces Time to Detection of Multidrug Resistant Tuberculosis

    Get PDF
    Background: The WHO has recommended the implementation of rapid diagnostic tests to detect and help combat M/XDR tuberculosis (TB). There are limited data on the performance and impact of these tests in field settings. Methods: The performance of the commercially available Genotype MTBDRplus molecular assay was compared to conventional methods including AFB smear, culture and drug susceptibility testing (DST) using both an absolute concentration method on Löwenstein-Jensen media and broth-based method using the MGIT 960 system. Sputum specimens were obtained from TB suspects in the country of Georgia who received care through the National TB Program. Results: Among 500 AFB smear-positive sputum specimens, 458 (91.6%) had both a positive sputum culture for Mycobacterium tuberculosis and a valid MTBDRplus assay result. The MTBDRplus assay detected isoniazid (INH) resistanc

    Virus-inhibitory activity of the antigen complex of opportunistic pathogenic bacteria against SARS-CoV-2

    Get PDF
    Introduction. The antigen complex of opportunistic pathogenic bacteria (ACOPB) has a protective effect against avian influenza viruses, herpes virus type 2, and other viruses that cause acute respiratory viral infections. In the context of the COVID-19 pandemic, an important task is to find out whether ACOPB has a protective effect against SARS-CoV-2. The purpose of the study was to evaluate in vitro the ACOPB virus-inhibitory activity against the Dubrovka laboratory strain of SARS-CoV-2. Materials and methods. The study was performed using Vero cell line CCL-81, human peripheral blood mononuclear cells (PBMCs), mouse monoclonal anti-idiotypic antibodies structurally mimicking biological effects of human interferons (IFNs), the Dubrovka laboratory strain of SARS-CoV-2. The infectivity of the virus was assessed by two methods: by virus titration using cell cultures and the limiting dilution method when the results are assessed by a cytopathic effect; the second method was a plaque assay. The in vitro virus inhibition test was performed using the cell culture susceptible to SARS-CoV-2; the mixture containing a specific dose of the virus and a two-fold dilution of ACOPB was transferred to the cell culture after the ACOPB medication had interacted with the virus at 4C for 2 hours. The ACOPB virus-inhibitory activity against SARS-CoV-2 was assessed by the functional activity of / and IFN receptors (RIFN) in human PBMCs induced in vitro by ACOPB and the ACOPB mixture with the specific dose of SARS-CoV-2. The RIFN expression level was measured by the indirect membrane immunofluorescence test. Results. Hemagglutination assay using chicken, mouse, guinea pig, and human red blood cells was performed for detection of the SARS-CoV-2 inhibitory protein. The lysate of Vero CCL-81 cells infected with SARS-CoV-2 Dubrovka demonstrated the highest hemagglutination activity with guinea pig red blood cells and low titers of hemagglutination in the virus-containing fluid. The virus inhibition test in the Vero CCL-81 cell culture demonstrated that ACOPB inhibited 10 doses of SARS-CoV-2 Dubrovka with the titer 1 : 32, providing 100% protection of the cell culture for 8 days (the monitoring period). ACOPB induced / and RIFN expression on membranes of human PBMCs in in vitro cultures and decreased RIFN / and expression after its interaction with SARS-CoV-2 Dubrovka. Conclusion. The experimental studies including the virus inhibition test in the cell culture susceptible to SARS-CoV-2 Dubrovka and the indirect membrane immunofluorescence assay using monoclonal anti-idiotypic antibodies mimicking IFN-like properties demonstrated that ACOPB had both an immunomodulatory and a virus-inhibitory effect

    From pandemic crisis to Rational Localization and optimal Logistics of Development

    No full text
    Research background: The aim of the scientific contribution is to analyze the current position of the Russian economy in the context of other countries. The article consists of a deduction of the current position of the Russian Federation and the subsequent proposal to continue the fight against the COVID-19 crisis. Purpose of the article: Using the analysis of available sources of scientific research, the analysis of the current position of the Russian economy in the context of other countries. The paper offers basic recommended goals for further progress in the time of a pandemic. Methods: The coronavirus pandemic has turned the world into a new reality. It showed the weaknesses and strengths of states, their constitutional structures, economic and social models. The post-pandemic world will be different, significantly different from the current one. And this pandemic will not be an exception, but will become one of a series of past and future world problems. And the world must be prepared to meet them. It is necessary to learn how to manage the development of large-scale systems at various levels from internal regions, states and to the world economic and political system as a whole. States must learn how to manage in a critical situation so as not to expose their peoples to significant disasters, much less extinction. They should establish mechanisms to predict and combat undesirable hazards. Using the scientific method of analysis of available resources, the authors analyzed the current position of the Russian Federation in relation to selected economies of the world. By synthesizing the knowledge and subsequent deduction, the authors propose further recommendations and steps in the time of the COVID-19 crisis. Findings & Value added: The pandemic that led the world to a crisis of health and survival, economy and trust has shown how much the world needs to be improved. At the same time, it clearly showed what strategic directions Russia needs to move in order to save its people, its territory, and strengthen itself in the top three world economic leaders. And if the strategies are clear, and the tasks are defined, then the matter remains only for their implementation

    Ecological features of the persistence of Vibrio cholerae: retrospective analysis and actual state of the problem

    Get PDF
    The review presents retrospective data on six cholera pandemics and current views on the causative agent of the seventh pandemic V. cholerae El Tor, which caused a pandemic infection with the formation of true persistent and temporary intermediate endemic foci that provide the longest pathogen circulation in the history of the disease. One of the possible explanations for such a long course of the cholera pandemic is associated with an extremely high variability of the genome and the development of a number of adaptive reactions that allow cholera vibrios to adapt and remain in the environment. Due to the development of molecular genetic research methods, the ability of cholera vibrios to form biofilms which increases stress resistance, the ability to spread by attachment to abiotic (plastic) and biotic substrates (zooplankton and phytoplankton) has been discovered. Biofilm formation is also directly related to overcoming the antagonistic action of members of aquatic ecosystems. Another strategy for the survival of cholera vibrios is the transition to an uncultured state that proves a low level of death in the population. Published data on the possible effects of temperature increasing due to the climate change on cholera outbreaks in Africa (Democratic Republic of the Congo, Nigeria, Angola, Zimbabwe, Sierra Leone), Southeast Asia (Thailand, Malaysia), Central Asia (Pakistan, Afghanistan, Kazakhstan) and South Asia (Nepal) are overviewed. Based on the publications of recent years, an analysis is made of the current state of the studied problem in the Russian Federation and, in particular, in the Rostov region

    Prevalence of anti-tuberculosis drug resistance in foreign-born tuberculosis cases in the U.S. and in their countries of origin.

    Get PDF
    BACKGROUND: Foreign-born individuals comprise >50% of tuberculosis (TB) cases in the U.S. Since anti-TB drug resistance is more common in most other countries, when evaluating a foreign-born individual for TB, one must consider the risk of drug resistance. Naturally, clinicians query The Global Project on Anti-tuberculosis Drug Resistance Surveillance (Global DRS) which provides population-based data on the prevalence of anti-TB drug resistance in 127 countries starting in 1994. However, foreign-born persons in the U.S. are a biased sample of the population of their countries of origin, and Global DRS data may not accurately predict their risk of drug resistance. Since implementing drug resistance surveillance in 1993, the U.S. National TB Surveillance System (NTSS) has accumulated systematic data on over 130,000 foreign-born TB cases from more than 200 countries and territories. Our objective was to determine whether the prevalence of drug resistance among foreign-born TB cases correlates better with data from the Global DRS or with data on foreign-born TB cases in the NTSS. METHODS AND FINDINGS: We compared the prevalence of resistance to isoniazid and rifampin among foreign-born TB cases in the U.S., 2007-2009, with US NTSS data from 1993 to 2006 and with Global DRS data from 1994-2007 visually with scatterplots and statistically with correlation and linear regression analyses. Among foreign-born TB cases in the U.S., 2007-2009, the prevalence of isoniazid resistance and multidrug resistance (MDR, i.e. resistance to isoniazid and rifampin), correlated much better with 1993-2006 US surveillance data (isoniazid: r = 0.95, P<.001, MDR: r = 0.75, P<.001) than with Global DRS data, 1994-2007 (isoniazid: r = 0.55, P = .001; MDR: r = 0.50, P<.001). CONCLUSION: Since 1993, the US NTSS has accumulated sufficient data on foreign-born TB cases to estimate the risk of drug resistance among such individuals better than data from the Global DRS

    Activation of Innate Immunity by Bacterial Ligands of Toll-like Receptors

    Get PDF
    Tγδ and B1 lymphocytes are essential components of the mucosal immune system, activating different bacterial and viral ligands without costimulatory signals and preprocessing of other immune effectors. This ability enables the immune system to provide rapid protection against pathogens and contributes to the decoding mechanism of the sensitizing activity of mucosal antigens, because the interaction of these cells produces antibodies for immunoglobulin M (IgM) and IgA, but not for IgE. We studied 3 routes of introducing antigens for opportunistic microorganisms to activate Tγδ and B1 lymphocytes: subcutaneous, intranasal, and oral. The subcutaneous and intranasal routes produced a significant increase of these cells in lymph nodes associated with the nasal cavity (NALT) and in those associated with bronchial tissue (BALT). The oral route significantly increased levels of these cells in the spleen, in NALT, BALT, and in nodes associated with the gut (GALT). We found that mucosal application of the immunomodulator Immunovac-VP-4 (contains antigens of conditionally pathogenic microorganisms), in conjunction with the activation of Tγδ and B1, induces adaptive immune mechanisms not only in the lymphoid formations associated with the respiratory system and with GALT, but also in the spleen (increased expression of cluster of differentiation 3 [CD3], CD4, CD8, CD19, and CD25). This indicates that there is migration of lymphoid cells from the regional lymph nodes and mucosal lymphoid tissues via the lymph and blood to distant organs, lymphoid development, and both local and systemic immunity. Mucosal application of Immunovac-VP-4 in mice potentiates the cytotoxic activity of NK cells in the NALT, BALT and GALT. The highest cytotoxicity was observed in cells, derived from lymphoid tissue of the intestine after oral immunization. Although we found that cytokine production was increased by all 3 immunization routes, it was most intensive after subcutaneous injection
    • …
    corecore