2,137 research outputs found

    Phase locking of coupled lasers with many longitudinal modes

    Full text link
    Detailed experimental and theoretical investigations on two coupled fiber lasers, each with many longitudinal modes, reveal that the behavior of the longitudinal modes depends on both the coupling strength as well as the detuning between them. For low to moderate coupling strength only longitudinal modes which are common for both lasers phase-lock while those that are not common gradually disappear. For larger coupling strengths, the longitudinal modes that are not common reappear and phase-lock. When the coupling strength approaches unity the coupled lasers behave as a single long cavity with correspondingly denser longitudinal modes. Finally, we show that the gradual increase in phase-locking as a function of the coupling strength results from competition between phase-locked and non phase-locked longitudinal modes.Comment: 3 pages, 4 figures, submitted to opt. let

    Quantum phase transitions, frustration, and the Fermi surface in the Kondo lattice model

    Full text link
    The quantum phase transition from a spin-Peierls phase with a small Fermi surface to a paramagnetic Luttinger-liquid phase with a large Fermi surface is studied in the framework of a one-dimensional Kondo-Heisenberg model that consists of an electron gas away from half filling, coupled to a spin-1/2 chain by Kondo interactions. The Kondo spins are further coupled to each other with isotropic nearest-neighbor and next-nearest-neighbor antiferromagnetic Heisenberg interactions which are tuned to the Majumdar-Ghosh point. Focusing on three-eighths filling and using the density-matrix renormalization-group (DMRG) method, we show that the zero-temperature transition between the phases with small and large Fermi momenta appears continuous, and involves a new intermediate phase where the Fermi surface is not well defined. The intermediate phase is spin gapped and has Kondo-spin correlations that show incommensurate modulations. Our results appear incompatible with the local picture for the quantum phase transition in heavy fermion compounds, which predicts an abrupt change in the size of the Fermi momentum.Comment: 9 pages, 8 figure

    Cyclic cocycles on twisted convolution algebras

    Full text link
    We give a construction of cyclic cocycles on convolution algebras twisted by gerbes over discrete translation groupoids. For proper \'etale groupoids, Tu and Xu provide a map between the periodic cyclic cohomology of a gerbe-twisted convolution algebra and twisted cohomology groups which is similar to a construction of Mathai and Stevenson. When the groupoid is not proper, we cannot construct an invariant connection on the gerbe; therefore to study this algebra, we instead develop simplicial techniques to construct a simplicial curvature 3-form representing the class of the gerbe. Then by using a JLO formula we define a morphism from a simplicial complex twisted by this simplicial curvature 3-form to the mixed bicomplex computing the periodic cyclic cohomology of the twisted convolution algebras. The results in this article were originally published in the author's Ph.D. thesis.Comment: 39 page

    25-Hydroxy vitamin-D, obesity, and associated variables as predictors of breast cancer risk and tamoxifen benefit in NSABP-P1.

    Get PDF
    Observational studies suggest that host factors are associated with breast cancer risk. The influence of obesity, vitamin-D status, insulin resistance, inflammation, and elevated adipocytokines in women at high risk of breast cancer is unknown. The NSABP-P1 trial population was used for a nested case-control study. Cases were drawn from those who developed invasive breast cancer and controls selected from unaffected participants (≤4 per case) matched for age, race, 5 year Gail score, and geographic location of clinical center as a surrogate for latitude. Fasting serum banked at trial enrolment was assayed for 25-hydroxy vitamin-D (25OHD), insulin, leptin (adipocytokine), and C-reactive protein (CRP, marker of inflammation). Logistic regression was used to test for associations between study variables and the risk of invasive breast cancer. Two hundred and thirty-one cases were matched with 856 controls. Mean age was 54, and 49% were premenopausal. There were negative correlations for 25OHD with body mass index (BMI), insulin, CRP, and leptin. BMI ≥ 25 kg/m(2) was associated with higher breast cancer risk (odds ratio [OR] 1.45, p = 0.02) and tamoxifen treatment was associated with lower risk (OR = 0.44, p < 0.001). Suboptimal 25OHD (<72 nmol/l) did not influence breast cancer risk (OR = 1.06, p = 0.76). When evaluated as continuous variables, 25OHD, insulin, CRP, and leptin levels were not associated with breast cancer risk (all p > 0.34). In this high risk population, higher BMI was associated with a greater breast cancer risk. Serum levels of 25OHD, insulin, CRP, and leptin were not independent predictors of either breast cancer risk or tamoxifen benefit

    Coherent control of correlated nanodevices: A hybrid time-dependent numerical renormalization-group approach to periodic switching

    Full text link
    The time-dependent numerical renormalization-group approach (TD-NRG), originally devised for tracking the real-time dynamics of quantum-impurity systems following a single quantum quench, is extended to multiple switching events. This generalization of the TD-NRG encompasses the possibility of periodic switching, allowing for coherent control of strongly correlated systems by an external time-dependent field. To this end, we have embedded the TD-NRG in a hybrid framework that combines the outstanding capabilities of the numerical renormalization group to systematically construct the effective low-energy Hamiltonian of the system with the prowess of complementary approaches for calculating the real-time dynamics derived from this Hamiltonian. We demonstrate the power of our approach by hybridizing the TD-NRG with the Chebyshev expansion technique in order to investigate periodic switching in the interacting resonant-level model. Although the interacting model shares the same low-energy fixed point as its noninteracting counterpart, we surprisingly find the gradual emergence of damped oscillations as the interaction strength is increased. Focusing on a single quantum quench and using a strong-coupling analysis, we reveal the origin of these interaction-induced oscillations and provide an analytical estimate for their frequency. The latter agrees well with the numerical results.Comment: 20 pager, Revtex, 10 figures, submitted to Physical Review

    Computing Nash Equilibrium in Wireless Ad Hoc Networks: A Simulation-Based Approach

    Full text link
    This paper studies the problem of computing Nash equilibrium in wireless networks modeled by Weighted Timed Automata. Such formalism comes together with a logic that can be used to describe complex features such as timed energy constraints. Our contribution is a method for solving this problem using Statistical Model Checking. The method has been implemented in UPPAAL model checker and has been applied to the analysis of Aloha CSMA/CD and IEEE 802.15.4 CSMA/CA protocols.Comment: In Proceedings IWIGP 2012, arXiv:1202.422

    Singular Cucker-Smale Dynamics

    Full text link
    The existing state of the art for singular models of flocking is overviewed, starting from microscopic model of Cucker and Smale with singular communication weight, through its mesoscopic mean-filed limit, up to the corresponding macroscopic regime. For the microscopic Cucker-Smale (CS) model, the collision-avoidance phenomenon is discussed, also in the presence of bonding forces and the decentralized control. For the kinetic mean-field model, the existence of global-in-time measure-valued solutions, with a special emphasis on a weak atomic uniqueness of solutions is sketched. Ultimately, for the macroscopic singular model, the summary of the existence results for the Euler-type alignment system is provided, including existence of strong solutions on one-dimensional torus, and the extension of this result to higher dimensions upon restriction on the smallness of initial data. Additionally, the pressureless Navier-Stokes-type system corresponding to particular choice of alignment kernel is presented, and compared - analytically and numerically - to the porous medium equation

    Gas2l3, a Novel Constriction Site-Associated Protein Whose Regulation Is Mediated by the APC/CCdh1APC/C^{Cdh1} Complex

    Get PDF
    Growth arrest-specific 2-like protein 3 (Gas2l3) was recently identified as an Actin/Tubulin cross-linker protein that regulates cytokinesis. Using cell-free systems from both frog eggs and human cells, we show that the Gas2l3 protein is targeted for ubiquitin-mediated proteolysis by the APC/CCdh1APC/C^{Cdh1} complex, but not by the APC/CCdc20APC/C^{Cdc20} complex, and is phosphorylated by Cdk1 in mitosis. Moreover, late in cytokinesis, Gas2l3 is exclusively localized to the constriction sites, which are the narrowest parts of the intercellular bridge connecting the two daughter cells. Overexpression of Gas2l3 specifically interferes with cell abscission, which is the final stage of cell division, when the cutting of the intercellular bridge at the constriction sites occurs. We therefore suggest that Gas2l3 is part of the cellular mechanism that terminates cell division
    corecore