47 research outputs found

    Always Winter? C.S. Lewis and Hope for the Visual Arts

    Get PDF

    Mutations in Arabidopsis \u3ci\u3eYellow Stripe-Like1\u3c/i\u3e and \u3ci\u3eYellow Stripe-Like3\u3c/i\u3e Reveal Their Roles in Metal Ion Homeostasis and Loading of Metal Ions in Seeds

    Get PDF
    Here, we describe two members of the Arabidopsis (Arabidopsis thaliana) Yellow Stripe-Like (YSL) family, AtYSL1 and AtYSL3. The YSL1 and YSL3 proteins are members of the oligopeptide transporter family and are predicted to be integral membrane proteins. YSL1 and YSL3 are similar to the maize (Zea mays) YS1 phytosiderophore transporter (ZmYS1) and the AtYSL2 iron (Fe)-nicotianamine transporter, and are predicted to transport metal-nicotianamine complexes into cells. YSL1 and YSL3 mRNAs are expressed in both root and shoot tissues, and both are regulated in response to the Fe status of the plant. β-Glucuronidase reporter expression, driven by YSL1 and YSL3 promoters, reveals expression patterns of the genes in roots, leaves, and flowers. Expression was highest in senescing rosette leaves and cauline leaves. Whereas the single mutants ysl1 and ysl3 had no visible phenotypes, the ysl1ysl3 double mutant exhibited Fe deficiency symptoms, such as interveinal chlorosis. Leaf Fe concentrations are decreased in the double mutant, whereas manganese, zinc, and especially copper concentrations are elevated. In seeds of double-mutant plants, the concentrations of Fe, zinc, and copper are low. Mobilization of metals from leaves during senescence is impaired in the double mutant. In addition, the double mutant has reduced fertility due to defective anther and embryo development. The proposed physiological roles for YSL1 and YSL3 are in delivery of metal micronutrients to and from vascular tissues

    Identification of a putative quantitative trait nucleotide in guanylate binding protein 5 for host response to PRRS virus infection

    Get PDF
    Citation: Koltes, J. E., Fritz-Waters, E., Eisley, C. J., Choi, I., Bao, H., Kommadath, A., . . . Reecy, J. M. (2015). Identification of a putative quantitative trait nucleotide in guanylate binding protein 5 for host response to PRRS virus infection. Bmc Genomics, 16, 13. doi:10.1186/s12864-015-1635-9Background: Previously, we identified a major quantitative trait locus (QTL) for host response to Porcine Respiratory and Reproductive Syndrome virus (PRRSV) infection in high linkage disequilibrium (LD) with SNP rs80800372 on Sus scrofa chromosome 4 (SSC4). Results: Within this QTL, guanylate binding protein 5 (GBP5) was differentially expressed (DE) (p < 0.05) in blood from AA versus AB rs80800372 genotyped pigs at 7,11, and 14 days post PRRSV infection. All variants within the GBP5 transcript in LD with rs80800372 exhibited allele specific expression (ASE) in AB individuals (p < 0.0001). A transcript re-assembly revealed three alternatively spliced transcripts for GBP5. An intronic SNP in GBP5, rs340943904, introduces a splice acceptor site that inserts five nucleotides into the transcript. Individuals homozygous for the unfavorable AA genotype predominantly produced this transcript, with a shifted reading frame and early stop codon that truncates the 88 C-terminal amino acids of the protein. RNA-seq analysis confirmed this SNP was associated with differential splicing by QTL genotype (p < 0.0001) and this was validated by quantitative capillary electrophoresis (p < 0.0001). The wild-type transcript was expressed at a higher level in AB versus AA individuals, whereas the five-nucleotide insertion transcript was the dominant form in AA individuals. Splicing and ASE results are consistent with the observed dominant nature of the favorable QTL allele. The rs340943904 SNP was also 100 % concordant with rs80800372 in a validation population that possessed an alternate form of the favorable B QTL haplotype. Conclusions: GBP5 is known to play a role in inflammasome assembly during immune response. However, the role of GBP5 host genetic variation in viral immunity is novel. These findings demonstrate that rs340943904 is a strong candidate causal mutation for the SSC4 QTL that controls variation in host response to PRRSV.Additional Authors: Lunney, J. K.;Liu, P.;Carpenter, S.;Rowland, R. R. R.;Dekkers, J. C. M.;Reecy, J. M

    Exploring genetic control of swine responses to viral diseases.

    Get PDF
    Our goal is to understand genomic control of viral disease responses focusing on the economically most important disease of pigs, porcine reproductive and respiratory syndrome

    “The uncertainty of life”

    No full text

    Session H: C.S. Lewis and the Arts

    No full text
    C.S. Lewis and the Possibility of Creative Nonfiction - Will Duffy Always Winter? C.S. Lewis and Hope for the Visual Arts - Jerry EIsley SIgns and C.S. Lewis: The Meaning of Meaning and the Value of Film - Charlie Star

    Motion and stability of a spinning spring-mass system in orbit.

    No full text
    corecore