100 research outputs found
Molecular dynamics simulation of plane poiseuille flow in nanochannels
This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.This paper presents new techniques and results of simulating microflows in plane channels by the molecular dynamics (MD) method. Mass forces and thermostat are not used in these techniques. The flows are simulated by both hard-sphere molecules and molecules with the Lennard-Jones intermolecular potential. Flow at a given fluid flow rate is implemented. In this case, the initial shock profile is transformed to a parabolic type profile. However, unlike in ordinary Poiseuille flows, a slip effect is recorded on the channel walls. It is shown that, in a nanochannel, a linear pressure gradient occurs. Fluid structuring is studied. The effects of fluid density, accommodation coefficients, and channel dimensions on flow properties are investigated.This work was supported in part by the Russian Foundation for Basic Researches (grant No. 07-08-00164) and by the grant of
the President of the Russian Federation for
Support of Leading Scientific Schools (project no. NSh-454.2008.1)
Viscosity and thermal conductivity of nanofluids
This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.The purpose of the present work was to study the momentum and energy transport processes in nanofluids by the molecular dynamics (MD) method. The MD-simulation results were compared with known formulae and experimental data. Unlike for suspensions with Brownian and other macroscopic particles, the viscosity and thermal conductivity of nanofluids were found to depend not only on the volume fraction of
nanoparticles but also on the mass and radius of nanoparticles. The possible mechanisms of the nanoparticle effect on the transport coefficients of nanofluids are discussed.This work was supported in part by the RFBR grant No. 07-08-00164)
NMR of liquid 3He in clay pores at 1.5 K
In the present work a new method for studying porous media by nuclear
magnetic resonance of liquid 3He has been proposed. This method has been
demonstrated in an example of a clay mineral sample. For the first time the
integral porosity of clay sample has been measured. For investigated samples
the value of integral porosity is in the range of 10-30%. Inverse Laplace
transform of 3He longitudinal magnetization recovery curve has been carried
out, thus distribution of relaxation times T1 has been obtained.Comment: 9 pages, 5 figure
Properties of Heavy Secondary Fluorine Cosmic Rays: Results from the Alpha Magnetic Spectrometer
Precise knowledge of the charge and rigidity dependence of the secondary cosmic ray fluxes and the secondary-to-primary flux ratios is essential in the understanding of cosmic ray propagation. We report the properties of heavy secondary cosmic ray fluorine F in the rigidity R range 2.15 GV to 2.9 TV based on 0.29 million events collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. The fluorine spectrum deviates from a single power law above 200 GV. The heavier secondary-to-primary F/Si flux ratio rigidity dependence is distinctly different from the lighter B/O (or B/C) rigidity dependence. In particular, above 10 GV, the F/Si/B/O ratio can be described by a power law R-delta with delta = 0.052 +/- 0.007. This shows that the propagation properties of heavy cosmic rays, from F to Si, are different from those of light cosmic rays, from He to O, and that the secondary cosmic rays have two classes
Properties of a New Group of Cosmic Nuclei: Results from the Alpha Magnetic Spectrometer on Sodium, Aluminum, and Nitrogen
We report the properties of sodium (Na) and aluminum (Al) cosmic rays in the rigidity range 2.15 GV to 3.0 TV based on 0.46 million sodium and 0.51 million aluminum nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. We found that Na and Al, together with nitrogen (N), belong to a distinct cosmic ray group. In this group, we observe that, similar to the N flux, both the Na flux and Al flux are well described by the sums of a primary cosmic ray component (proportional to the silicon flux) and a secondary cosmic ray component (proportional to the fluorine flux). The fraction of the primary component increases with rigidity for the N, Na, and Al fluxes and becomes dominant at the highest rigidities. The Na/Si and Al/Si abundance ratios at the source, 0.036 +/- 0.003 for Na/Si and 0.103 +/- 0.004 for Al/Si, are determined independent of cosmic ray propagation
Properties of Iron Primary Cosmic Rays: Results from the Alpha Magnetic Spectrometer
We report the observation of new properties of primary iron (Fe) cosmic rays in the rigidity range 2.65 GV to 3.0 TV with 0.62 x 10(6) iron nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. Above 80.5 GV the rigidity dependence of the cosmic ray Fe flux is identical to the rigidity dependence of the primary cosmic ray He, C, and O fluxes, with the Fe/O flux ratio being constant at 0.155 +/- 0.006. This shows that unexpectedly Fe and He, C, and O belong to the same class of primary cosmic rays which is different from the primary cosmic rays Ne, Mg, and Si class
Properties of Daily Helium Fluxes
We present the precision measurement of 2824 daily helium fluxes in cosmic rays from May 20, 2011 to October 29, 2019 in the rigidity interval from 1.71 to 100 GV based on 7.6 x 10(8) helium nuclei collected with the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station. The helium flux and the helium to proton flux ratio exhibit variations on multiple timescales. In nearly all the time intervals from 2014 to 2018, we observed recurrent helium flux variations with a period of 27 days. Shorter periods of 9 days and 13.5 days are observed in 2016. The strength of all three periodicities changes with time and rigidity. In the entire time period, we found that below similar to 7 GV the helium flux exhibits larger time variations than the proton flux, and above similar to 7 GV the helium to proton flux ratio is time independent. Remarkably, below 2.4 GV a hysteresis between the helium to proton flux ratio and the helium flux was observed at greater than the 7 sigma level. This shows that at low rigidity the modulation of the helium to proton flux ratio is different before and after the solar maximum in 2014
- …