6,371 research outputs found
On the effects of irrelevant boundary scaling operators
We investigate consequences of adding irrelevant (or less relevant) boundary
operators to a (1+1)-dimensional field theory, using the Ising and the boundary
sine-Gordon model as examples. In the integrable case, irrelevant perturbations
are shown to multiply reflection matrices by CDD factors: the low-energy
behavior is not changed, while various high-energy behaviors are possible,
including ``roaming'' RG trajectories. In the non-integrable case, a Monte
Carlo study shows that the IR behavior is again generically unchanged, provided
scaling variables are appropriately renormalized.Comment: 4 Pages RevTeX, 3 figures (eps files
Doping- and size-dependent suppression of tunneling in carbon nanotubes
We study the effect of doping in the suppression of tunneling observed in
multi-walled nanotubes, incorporating as well the influence of the finite
dimensions of the system. A scaling approach allows us to encompass the
different values of the critical exponent measured for the tunneling
density of states in carbon nanotubes. We predict that further reduction of
should be observed in multi-walled nanotubes with a sizeable amount
of doping. In the case of nanotubes with a very large radius, we find a
pronounced crossover between a high-energy regime with persistent
quasiparticles and a low-energy regime with the properties of a one-dimensional
conductor.Comment: 4 pages, 2 figures, LaTeX file, pacs: 71.10.Pm, 71.20.Tx, 72.80.R
Towards realistic implementations of a Majorana surface code
Surface codes have emerged as promising candidates for quantum information
processing. Building on the previous idea to realize the physical qubits of
such systems in terms of Majorana bound states supported by topological
semiconductor nanowires, we show that the basic code operations, namely
projective stabilizer measurements and qubit manipulations, can be implemented
by conventional tunnel conductance probes and charge pumping via
single-electron transistors, respectively. The simplicity of the access scheme
suggests that a functional code might be in close experimental reach.Comment: 5 pages, 1 p. suppl.mat, PRL in pres
Luttinger liquid behavior in multi-wall carbon nanotubes
The low-energy theory for multi-wall carbon nanotubes including the
long-ranged Coulomb interactions, internal screening effects, and
single-electron hopping between graphite shells is derived and analyzed by
bosonization methods. Characteristic Luttinger liquid power laws are found for
the tunneling density of states, with exponents approaching their Fermi liquid
value only very slowly as the number of conducting shells increases. With minor
modifications, the same conclusions apply to transport in ropes of single-wall
nanotubes.Comment: 4 pages Revte
Transport in Double-Crossed Luttinger Liquids
We study transport through two Luttinger liquids (one-dimensional electrons
interacting through a Coulomb repulsion in a metal) coupled together at {\it
two} points. External voltage biases are incorporated through boundary
conditions. We include density-density couplings as well as single-particle
hops at the contacts. For weak repulsive interactions, transport through the
wires remains undisturbed by the inter-wire couplings, which renormalise to
zero. For strong repulsive interactions, the inter-wire couplings become
strong. For symmetric barriers and no external voltage bias, a single gate
voltage is sufficient to tune for resonance transmission in both wires.
However, for asymmetric couplings or for finite external biases, the system is
insulating.Comment: Latex file, 11 pages, one eps figur
Transport theory of carbon nanotube Y junctions
We describe a generalization of Landauer-B\"uttiker theory for networks of
interacting metallic carbon nanotubes. We start with symmetric starlike
junctions and then extend our approach to asymmetric systems. While the
symmetric case is solved in closed form, the asymmetric situation is treated by
a mix of perturbative and non-perturbative methods. For N>2 repulsively
interacting nanotubes, the only stable fixed point of the symmetric system
corresponds to an isolated node. Detailed results for both symmetric and
asymmetric systems are shown for N=3, corresponding to carbon nanotube Y
junctions.Comment: submitted to New Journal of Physics, Focus Issue on Carbon Nanotubes,
15 pages, 3 figure
Roadmap to Majorana surface codes
Surface codes offer a very promising avenue towards fault-tolerant quantum
computation. We argue that two-dimensional interacting networks of Majorana
bound states in topological superconductor/semiconductor heterostructures hold
several distinct advantages in that direction, both concerning the hardware
realization and the actual operation of the code. We here discuss how
topologically protected logical qubits in this Majorana surface code
architecture can be defined, initialized, manipulated, and read out. All
physical ingredients needed to implement these operations are routinely used in
topologically trivial quantum devices. In particular, we show that by means of
quantum interference terms in linear conductance measurements, composite
single-electron pumping protocols, and gate-tunable tunnel barriers, the full
set of quantum gates required for universal quantum computation can be
implemented.Comment: 23 pages, 8 figure
Confinement-induced resonances for a two-component ultracold atom gas in arbitrary quasi-one-dimensional traps
We solve the two-particle s-wave scattering problem for ultracold atom gases
confined in arbitrary quasi-one-dimensional trapping potentials, allowing for
two different atom species. As a consequence, the center-of-mass and relative
degrees of freedom do not factorize. We derive bound-state solutions and obtain
the general scattering solution, which exhibits several resonances in the 1D
scattering length induced by the confinement. We apply our formalism to two
experimentally relevant cases: (i) interspecies scattering in a two-species
mixture, and (ii) the two-body problem for a single species in a non-parabolic
trap.Comment: 22 pages, 3 figure
- …