6,165 research outputs found
Interaction-induced harmonic frequency mixing in quantum dots
We show that harmonic frequency mixing in quantum dots coupled to two leads
under the influence of time-dependent voltages of different frequency is
dominated by interaction effects. This offers a unique and direct spectroscopic
tool to access correlations, and holds promise for efficient frequency mixing
in nano-devices. Explicit results are provided for an Anderson dot and for a
molecular level with phonon-mediated interactions.Comment: 4 pages, 2 figures, accepted for publication in Phys.Rev.Let
Management of FUS and Recurrent Urethral Obstruction
Feline Urologic Syndrom (FUS) is a clinical diagnosis characterized by urethral obstruction in sone male cats and dysuria with or without hematuria in both sexes. FUS may be chronic and symptomatic therapy may not totally resolve the signs. This paper reviews the medical management of FUS and the preferred prophylactic surgical treatment for recurrent urethral obstruction
Parameter identification in a semilinear hyperbolic system
We consider the identification of a nonlinear friction law in a
one-dimensional damped wave equation from additional boundary measurements.
Well-posedness of the governing semilinear hyperbolic system is established via
semigroup theory and contraction arguments. We then investigte the inverse
problem of recovering the unknown nonlinear damping law from additional
boundary measurements of the pressure drop along the pipe. This coefficient
inverse problem is shown to be ill-posed and a variational regularization
method is considered for its stable solution. We prove existence of minimizers
for the Tikhonov functional and discuss the convergence of the regularized
solutions under an approximate source condition. The meaning of this condition
and some arguments for its validity are discussed in detail and numerical
results are presented for illustration of the theoretical findings
Transport theory of carbon nanotube Y junctions
We describe a generalization of Landauer-B\"uttiker theory for networks of
interacting metallic carbon nanotubes. We start with symmetric starlike
junctions and then extend our approach to asymmetric systems. While the
symmetric case is solved in closed form, the asymmetric situation is treated by
a mix of perturbative and non-perturbative methods. For N>2 repulsively
interacting nanotubes, the only stable fixed point of the symmetric system
corresponds to an isolated node. Detailed results for both symmetric and
asymmetric systems are shown for N=3, corresponding to carbon nanotube Y
junctions.Comment: submitted to New Journal of Physics, Focus Issue on Carbon Nanotubes,
15 pages, 3 figure
Confinement-induced resonances for a two-component ultracold atom gas in arbitrary quasi-one-dimensional traps
We solve the two-particle s-wave scattering problem for ultracold atom gases
confined in arbitrary quasi-one-dimensional trapping potentials, allowing for
two different atom species. As a consequence, the center-of-mass and relative
degrees of freedom do not factorize. We derive bound-state solutions and obtain
the general scattering solution, which exhibits several resonances in the 1D
scattering length induced by the confinement. We apply our formalism to two
experimentally relevant cases: (i) interspecies scattering in a two-species
mixture, and (ii) the two-body problem for a single species in a non-parabolic
trap.Comment: 22 pages, 3 figure
Applying voltage sources to a Luttinger liquid with arbitrary transmission
The Landauer approach to transport in mesoscopic conductors has been
generalized to allow for strong electronic correlations in a single-channel
quantum wire. We describe in detail how to account for external voltage sources
in adiabatic contact with a quantum wire containing a backscatterer of
arbitrary strength. Assuming that the quantum wire is in the Luttinger liquid
state, voltage sources lead to radiative boundary conditions applied to the
displacement field employed in the bosonization scheme. We present the exact
solution of the transport problem for arbitrary backscattering strength at the
special Coulomb interaction parameter g=1/2.Comment: 9 pages REVTeX, incl 2 fig
Charge qubit entanglement in double quantum dots
We study entanglement of charge qubits in a vertical tunnel-coupled double
quantum dot containing two interacting electrons. Exact diagonalization is used
to compute the negativity characterizing entanglement. We find that
entanglement can be efficiently generated and controlled by sidegate voltages,
and describe how it can be detected. For large enough tunnel coupling, the
negativity shows a pronounced maximum at an intermediate interaction strength
within the Wigner molecule regime.Comment: revised version of the manuscript, as published in EPL, 7 pages, 4
figure
Transport in Double-Crossed Luttinger Liquids
We study transport through two Luttinger liquids (one-dimensional electrons
interacting through a Coulomb repulsion in a metal) coupled together at {\it
two} points. External voltage biases are incorporated through boundary
conditions. We include density-density couplings as well as single-particle
hops at the contacts. For weak repulsive interactions, transport through the
wires remains undisturbed by the inter-wire couplings, which renormalise to
zero. For strong repulsive interactions, the inter-wire couplings become
strong. For symmetric barriers and no external voltage bias, a single gate
voltage is sufficient to tune for resonance transmission in both wires.
However, for asymmetric couplings or for finite external biases, the system is
insulating.Comment: Latex file, 11 pages, one eps figur
Paraconductivity in Carbon Nanotubes
We report the calculation of paraconductivity in carbon nanotubes above the
superconducting transition temperature. The complex behavior of
paraconductivity depending upon the tube radius, temperature and magnetic field
strength is analyzed. The results are qualitatively compared with recent
experimental observations in carbon nanotubes of an inherent transition to the
superconducting state and pronounced thermodynamic fluctuations above .
The application of our results to single-wall and multi-wall carbon nanotubes
as well as ropes of nanotubes is discussed.Comment: 7 pages, 1 figur
- …