6,165 research outputs found

    Interaction-induced harmonic frequency mixing in quantum dots

    Full text link
    We show that harmonic frequency mixing in quantum dots coupled to two leads under the influence of time-dependent voltages of different frequency is dominated by interaction effects. This offers a unique and direct spectroscopic tool to access correlations, and holds promise for efficient frequency mixing in nano-devices. Explicit results are provided for an Anderson dot and for a molecular level with phonon-mediated interactions.Comment: 4 pages, 2 figures, accepted for publication in Phys.Rev.Let

    Management of FUS and Recurrent Urethral Obstruction

    Get PDF
    Feline Urologic Syndrom (FUS) is a clinical diagnosis characterized by urethral obstruction in sone male cats and dysuria with or without hematuria in both sexes. FUS may be chronic and symptomatic therapy may not totally resolve the signs. This paper reviews the medical management of FUS and the preferred prophylactic surgical treatment for recurrent urethral obstruction

    Parameter identification in a semilinear hyperbolic system

    Get PDF
    We consider the identification of a nonlinear friction law in a one-dimensional damped wave equation from additional boundary measurements. Well-posedness of the governing semilinear hyperbolic system is established via semigroup theory and contraction arguments. We then investigte the inverse problem of recovering the unknown nonlinear damping law from additional boundary measurements of the pressure drop along the pipe. This coefficient inverse problem is shown to be ill-posed and a variational regularization method is considered for its stable solution. We prove existence of minimizers for the Tikhonov functional and discuss the convergence of the regularized solutions under an approximate source condition. The meaning of this condition and some arguments for its validity are discussed in detail and numerical results are presented for illustration of the theoretical findings

    Transport theory of carbon nanotube Y junctions

    Full text link
    We describe a generalization of Landauer-B\"uttiker theory for networks of interacting metallic carbon nanotubes. We start with symmetric starlike junctions and then extend our approach to asymmetric systems. While the symmetric case is solved in closed form, the asymmetric situation is treated by a mix of perturbative and non-perturbative methods. For N>2 repulsively interacting nanotubes, the only stable fixed point of the symmetric system corresponds to an isolated node. Detailed results for both symmetric and asymmetric systems are shown for N=3, corresponding to carbon nanotube Y junctions.Comment: submitted to New Journal of Physics, Focus Issue on Carbon Nanotubes, 15 pages, 3 figure

    Confinement-induced resonances for a two-component ultracold atom gas in arbitrary quasi-one-dimensional traps

    Full text link
    We solve the two-particle s-wave scattering problem for ultracold atom gases confined in arbitrary quasi-one-dimensional trapping potentials, allowing for two different atom species. As a consequence, the center-of-mass and relative degrees of freedom do not factorize. We derive bound-state solutions and obtain the general scattering solution, which exhibits several resonances in the 1D scattering length induced by the confinement. We apply our formalism to two experimentally relevant cases: (i) interspecies scattering in a two-species mixture, and (ii) the two-body problem for a single species in a non-parabolic trap.Comment: 22 pages, 3 figure

    Applying voltage sources to a Luttinger liquid with arbitrary transmission

    Full text link
    The Landauer approach to transport in mesoscopic conductors has been generalized to allow for strong electronic correlations in a single-channel quantum wire. We describe in detail how to account for external voltage sources in adiabatic contact with a quantum wire containing a backscatterer of arbitrary strength. Assuming that the quantum wire is in the Luttinger liquid state, voltage sources lead to radiative boundary conditions applied to the displacement field employed in the bosonization scheme. We present the exact solution of the transport problem for arbitrary backscattering strength at the special Coulomb interaction parameter g=1/2.Comment: 9 pages REVTeX, incl 2 fig

    Charge qubit entanglement in double quantum dots

    Full text link
    We study entanglement of charge qubits in a vertical tunnel-coupled double quantum dot containing two interacting electrons. Exact diagonalization is used to compute the negativity characterizing entanglement. We find that entanglement can be efficiently generated and controlled by sidegate voltages, and describe how it can be detected. For large enough tunnel coupling, the negativity shows a pronounced maximum at an intermediate interaction strength within the Wigner molecule regime.Comment: revised version of the manuscript, as published in EPL, 7 pages, 4 figure

    Transport in Double-Crossed Luttinger Liquids

    Full text link
    We study transport through two Luttinger liquids (one-dimensional electrons interacting through a Coulomb repulsion in a metal) coupled together at {\it two} points. External voltage biases are incorporated through boundary conditions. We include density-density couplings as well as single-particle hops at the contacts. For weak repulsive interactions, transport through the wires remains undisturbed by the inter-wire couplings, which renormalise to zero. For strong repulsive interactions, the inter-wire couplings become strong. For symmetric barriers and no external voltage bias, a single gate voltage is sufficient to tune for resonance transmission in both wires. However, for asymmetric couplings or for finite external biases, the system is insulating.Comment: Latex file, 11 pages, one eps figur

    Paraconductivity in Carbon Nanotubes

    Full text link
    We report the calculation of paraconductivity in carbon nanotubes above the superconducting transition temperature. The complex behavior of paraconductivity depending upon the tube radius, temperature and magnetic field strength is analyzed. The results are qualitatively compared with recent experimental observations in carbon nanotubes of an inherent transition to the superconducting state and pronounced thermodynamic fluctuations above TcT_{c}. The application of our results to single-wall and multi-wall carbon nanotubes as well as ropes of nanotubes is discussed.Comment: 7 pages, 1 figur
    • …
    corecore