308 research outputs found

    Field Immune Assessment during Simulated Planetary Exploration in the Canadian Arctic

    Get PDF
    Dysregulation of the immune system has been shown to occur during space flight, although the detailed nature of the phenomenon and the clinical risks for exploration class missions has yet to be established. In addition, the growing clinical significance of immune system evaluation combined with epidemic infectious disease rates in third world countries provides a strong rationale for the development of field-compatible clinical immunology techniques and equipment. In July 2002 NASA performed a comprehensive field immunology assessment on crewmembers participating in the Haughton-Mars Project (HMP) on Devon Island in the high Canadian Arctic. The purpose of the study was to evaluate mission-associated effects on the human immune system, as well as to evaluate techniques developed for processing immune samples in remote field locations. Ten HMP-2002 participants volunteered for the study. A field protocol was developed at NASA-JSC for performing sample collection, blood staining/processing for immunophenotype analysis, wholeblood mitogenic culture for functional assessments and cell-sample preservation on-location at Devon Island. Specific assays included peripheral leukocyte distribution; constitutively activated T cells, intracellular cytokine profiles and plasma EBV viral antibody levels. Study timepoints were L-30, midmission and R+60. The protocol developed for immune sample processing in remote field locations functioned properly. Samples were processed in the field location, and stabilized for subsequent analysis at the Johnson Space Center in Houston. The data indicated that some phenotype, immune function and stress hormone changes occurred in the HMP field participants that were largely distinct from pre-mission baseline and post-mission recovery data. These immune changes appear similar to those observed in Astronauts following spaceflight. The sample processing protocol developed for this study may have applications for immune assessment during exploration-class space missions or in remote terrestrial field locations. The data validate the use of the HMP as a ground-based spaceflight/planetary exploration analog for some aspects of human physiology

    Automated high‐speed CE system for multiple samples

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96756/1/elps4558.pd

    Multiplexed detection and applications for separations on parallel microchips

    Full text link
    Much work has been performed since the development of the lab-on-a-chip concept that has brought microfabricated systems to the forefront of bioanalytical research. The success of using these microchips for performing complicated biological assays faster and cheaper than conventional methods has facilitated their emerging popularity among researchers. A recently exploited advantage of microfabricated technology has led to the creation of single wafers with multiple channel manifolds for high-throughput experiments. Efforts toward parallel microchip development have yielded fascinating new devices for chemical separations showing the potential for replacing conventional multiplexing techniques. This review will focus on recent work toward multiplexed separations on microdevices and complementary detection instrumentation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/60902/1/3296_ftp.pd

    Flow cytometry for microbial sensing in environmental sustainability applications: current status and future prospects

    Full text link
    Practical and accurate microbial assessment of environmental systems is predicated on the detection and quantification of various microbial parameters in complex matrices. Traditional growth-based assays, considered to be both slow and biased, are increasingly being replaced by optical detection methods such as flow cytometry. Flow cytometry (FCM) offers high-speed multi-parametric data acquisition, compatibility with current molecular-based microbial detection technologies, and is a proven technology platform. The unique technical properties of flow cytometry have allowed the discrimination of bacteria based on nucleic acid staining, microbial identification based on genomic and immunologic characteristics, and determination of cell viability. For this technology to achieve the ultimate goal of monitoring the microbial ecology of distributed systems, it will be necessary to develop a fully functional, low cost, and networkable microsystem platform capable of rapid detection of multiple species of microorganisms simultaneously under realistic environmental conditions. One such microsystem, miniaturized and integrated in accordance with recent advances in micro-electro-mechanical systems technology, is named the Micro Integrated Flow Cytometer. This manuscript is a minireview of the current status and future prospects for environmental application of flow cytometry in general, and micro-flow cytometry in particular.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75610/1/j.femsec.2004.01.014.pd

    Van de Graaff generator for capillary electrophoresis

    Get PDF
    A new approach for high voltage capillary electrophoresis (CE) is proposed, which replaces the standard high voltage power supply with a Van de Graaff generator, a low current power source. Because the Van de Graaff generator is a current-limited source (10 μA), potentials exceeding 100 kV can be generated for CE when the electrical resistance of the capillary is maximized. This was achieved by decreasing the capillary diameter and reducing the buffer ionic strength. Using 2 mM borate buffer and a 5 μm i.d. capillary, fluorescently labeled amino acids were separated with efficiencies up to 3.5 million plates; a 5.7 fold improvement in separation efficiency compared to a normal power supply (NPS) typically used in CE. This separation efficiency was realized using a simple set-up without significant Joule heating, making the Van de Graaff generator a promising alternative for applying the high potentials required for enhancing resolution in the separation and analysis of highly complex samples, for example mixtures of glycans

    Thermocapillary pumping of discrete drops in microfabricated analysis devices

    Full text link
    A nonmechanical pumping mechanism, thermocapillary pumping (TCP), is described for moving nanoliter- and picoliter-sized drops of liquid within microfabricated flow channels. In TCP, one end of a single drop is heated to create a surface tension difference between the ends of the drop. The induced surface tension difference causes a capillary pressure difference between the two drop ends and results in drop motion. TCP velocities of up to 20 mm/min were measured for several liquids at temperature differences between 10 and 70°C. An expression developed for TCP velocity yields predictions that agree with experimental velocities within corresponding uncertainty limits. Several techniques for assisting TCP are also suggested when contact angle hysteresis, the major factor limiting TCP velocities, is too large. These techniques include using surface treatments to reduce the contact angle hysteresis, converging channels to offset hysteresis, or an applied pressure to assist in movement.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34237/1/690450215_ftp.pd
    corecore