30,164 research outputs found

    High temperature circuit breaker

    Get PDF
    Alternating current circuit breaker is suitable for reliable long-term service at 1000 deg F in the vacuum conditions of outer space. Construction materials are resistant to nuclear radiation and vacuum welding. Service test conditions and results are given

    Extraction efficiency of drifting electrons in a two-phase xenon time projection chamber

    Full text link
    We present a measurement of the extraction efficiency of quasi-free electrons from the liquid into the gas phase in a two-phase xenon time-projection chamber. The measurements span a range of electric fields from 2.4 to 7.1 kV/cm in the liquid xenon, corresponding to 4.5 to 13.1 kV/cm in the gaseous xenon. Extraction efficiency continues to increase at the highest extraction fields, implying that additional charge signal may be attained in two-phase xenon detectors through careful high-voltage engineering of the gate-anode region

    Calibration of a two-phase xenon time projection chamber with a 37^{37}Ar source

    Full text link
    We calibrate a two-phase xenon detector at 0.27 keV in the charge channel and at 2.8 keV in both the light and charge channels using a 37^{37}Ar source that is directly released into the detector. We map the light and charge yields as a function of electric drift field. For the 2.8 keV peak, we calculate the Thomas-Imel box parameter for recombination and determine its dependence on drift field. For the same peak, we achieve an energy resolution, Eσ/EmeanE_{\sigma}/E_{mean}, between 9.8% and 10.8% for 0.1 kV/cm to 2 kV/cm electric drift fields.Comment: 12 pages, 7 figure

    Analytical calculation of the Green's function and Drude weight for a correlated fermion-boson system

    Full text link
    In classical Drude theory the conductivity is determined by the mass of the propagating particles and the mean free path between two scattering events. For a quantum particle this simple picture of diffusive transport loses relevance if strong correlations dominate the particle motion. We study a situation where the propagation of a fermionic particle is possible only through creation and annihilation of local bosonic excitations. This correlated quantum transport process is outside the Drude picture, since one cannot distinguish between free propagation and intermittent scattering. The characterization of transport is possible using the Drude weight obtained from the f-sum rule, although its interpretation in terms of free mass and mean free path breaks down. For the situation studied we calculate the Green's function and Drude weight using a Green's functions expansion technique, and discuss their physical meaning.Comment: final version, minor correction

    Modelling an isolated dust grain in a plasma using matched asymptotic expansions

    Get PDF
    The study of dusty plasmas is of significant practical use and scientific interest. A characteristic feature of dust grains in a plasma is that they are typically smaller than the electron Debye distance, a property which we exploit using the technique of matched asymptotic expansions. We first consider the case of a spherical dust particle in a stationary plasma, employing the Allen–Boyd–Reynolds theory, which assumes cold, collisionless ions. We derive analytical expressions for the electric potential, the ion number density and ion velocity. This requires only one computation that is not specific to a single set of dust–plasma parameters, and sheds new light on the shielding distance of a dust grain. The extension of this calculation to the case of uniform ion streaming past the dust grain, a scenario of interest in many dusty plasmas, is less straightforward. For streaming below a certain threshold we again establish asymptotic solutions but above the streaming threshold there appears to be a fundamental change in the behaviour of the system

    The barriers to and enablers of providing reasonably adjusted health services to people with intellectual disabilities in acute hospitals: evidence from a mixed-methods study.

    Get PDF
    OBJECTIVE: To identify the factors that promote and compromise the implementation of reasonably adjusted healthcare services for patients with intellectual disabilities in acute National Health Service (NHS) hospitals. DESIGN: A mixed-methods study involving interviews, questionnaires and participant observation (July 2011-March 2013). SETTING: Six acute NHS hospital trusts in England. METHODS: Reasonable adjustments for people with intellectual disabilities were identified through the literature. Data were collected on implementation and staff understanding of these adjustments. RESULTS: Data collected included staff questionnaires (n=990), staff interviews (n=68), interviews with adults with intellectual disabilities (n=33), questionnaires (n=88) and interviews (n=37) with carers of patients with intellectual disabilities, and expert panel discussions (n=42). Hospital strategies that supported implementation of reasonable adjustments did not reliably translate into consistent provision of such adjustments. Good practice often depended on the knowledge, understanding and flexibility of individual staff and teams, leading to the delivery of reasonable adjustments being haphazard throughout the organisation. Major barriers included: lack of effective systems for identifying and flagging patients with intellectual disabilities, lack of staff understanding of the reasonable adjustments that may be needed, lack of clear lines of responsibility and accountability for implementing reasonable adjustments, and lack of allocation of additional funding and resources. Key enablers were the Intellectual Disability Liaison Nurse and the ward manager. CONCLUSIONS: The evidence suggests that ward culture, staff attitudes and staff knowledge are crucial in ensuring that hospital services are accessible to vulnerable patients. The authors suggest that flagging the need for specific reasonable adjustments, rather than the vulnerable condition itself, may address some of the barriers. Further research is recommended that describes and quantifies the most frequently needed reasonable adjustments within the hospital pathways of vulnerable patient groups, and the most effective organisational infrastructure required to guarantee their use, together with resource implications

    Fundamental Oscillation Periods of the Interlayer Exchange Coupling beyond the RKKY Approximation

    Full text link
    A general method for obtaining the oscillation periods of the interlayer exchange coupling is presented. It is shown that it is possible for the coupling to oscillate with additional periods beyond the ones predicted by the RKKY theory. The relation between the oscillation periods and the spacer Fermi surface is clarified, showing that non-RKKY periods do not bear a direct correspondence with the Fermi surface. The interesting case of a FCC(110) structure is investigated, unmistakably proving the existence and relevance of non-RKKY oscillations. The general conditions for the occurrence of non-RKKY oscillations are also presented.Comment: 34 pages, 10 figures ; to appear in J. Phys.: Condens. Mat

    Tracing Slow Winds from T Tauri Stars via Low Velocity Forbidden Line Emission

    Get PDF
    Using Keck/HIRES spectra {\Delta}v ~ 7 km/s, we analyze forbidden lines of [O I] 6300 {\AA}, [O I] 5577 {\AA} and [S II] 6731 {\AA} from 33 T Tauri stars covering a range of disk evolutionary stages. After removing a high velocity component (HVC) associated with microjets, we study the properties of the low velocity component (LVC). The LVC can be attributed to slow disk winds that could be magnetically (MHD) or thermally (photoevaporative) driven. Both of these winds play an important role in the evolution and dispersal of protoplanetary material. LVC emission is seen in all 30 stars with detected [O I] but only in 2 out of eight with detected [S II] , so our analysis is largely based on the properties of the [O I] LVC. The LVC itself is resolved into broad (BC) and narrow (NC) kinematic components. Both components are found over a wide range of accretion rates and their luminosity is correlated with the accretion luminosity, but the NC is proportionately stronger than the BC in transition disks. The FWHM of both the BC and NC correlates with disk inclination, consistent with Keplerian broadening from radii of 0.05 to 0.5 AU and 0.5 to 5 AU, respectively. The velocity centroids of the BC suggest formation in an MHD disk wind, with the largest blueshifts found in sources with closer to face-on orientations. The velocity centroids of the NC however, show no dependence on disk inclination. The origin of this component is less clear and the evidence for photoevaporation is not conclusive

    Electronic structure and resistivity of the double exchange model

    Full text link
    The double exchange (DE) model with quantum local spins S is studied; an equation of motion approach is used and decoupling approximations analogous to Hubbard's are made. Our approximate one-electron Green function G is exact in the atomic limit of zero bandwidth for all S and band filling n, and as n->0 reduces to a dynamical coherent potential approximation (CPA) due to Kubo; we regard our approximation as a many-body generalisation of Kubo's CPA. G is calculated self-consistently for general S in the paramagnetic state and for S=1/2 in a state of arbitrary magnetization. The electronic structure is investigated and four bands per spin are obtained centred on the atomic limit peaks of the spectral function. A resistivity formula appropriate to the model is derived from the Kubo formula and the paramagnetic state resistivity rho is calculated; insulating states are correctly obtained at n=0 and n=1 for strong Hund coupling. Our prediction for rho is much too small to be consistent with experiments on manganites so we agree with Millis et al that the bare DE model is inadequate. We show that the agreement with experiment obtained by Furukawa is due to his use of an unphysical density of states.Comment: 20 pages, 8 figures, submitted to J. Phys.: Condens. Matte

    Variational study of a dilute Bose condensate in a harmonic trap

    Full text link
    A two-parameter trial condensate wave function is used to find an approximate variational solution to the Gross-Pitaevskii equation for N0N_0 condensed bosons in an isotropic harmonic trap with oscillator length d0d_0 and interacting through a repulsive two-body scattering length a>0a>0. The dimensionless parameter N0≡N0a/d0{\cal N}_0 \equiv N_0a/d_0 characterizes the effect of the interparticle interactions, with N0≪1{\cal N}_0 \ll 1 for an ideal gas and N0≫1{\cal N}_0 \gg 1 for a strongly interacting system (the Thomas-Fermi limit). The trial function interpolates smoothly between these two limits, and the three separate contributions (kinetic energy, trap potential energy, and two-body interaction energy) to the variational condensate energy and the condensate chemical potential are determined parametrically for any value of N0{\cal N}_0, along with illustrative numerical values. The straightforward generalization to an anisotropic harmonic trap is considered briefly.Comment: 14 pages, RevTeX, submitted to Journal of Low Temperature Physic
    • …
    corecore