291 research outputs found

    Digital Surface Modelling in Developing Countries Using Spaceborne SAR Techniques

    Get PDF
    Topographic databases at the national level, in the form of Digital Surface Models (DSMs), are required for a large number of applications which have been spurred on by the increased use of Geographic Information Systems (GIS). Ground-Based (surveying, GPS, etc.) and traditional airborne approaches to generating topographic information are proving to be time consuming and costly for applications in developing countries. Where these countries are located in the tropical zone, they are affected by the additional problem of cloud cover which could cause delays for almost 75% of the year in obtaining optical imagery. The Caribbean happens to be one such affected territory that is in need of national digital topographic information for its GIS database developments, 3D visualization of landscapes and for use in the digital ortho-rectification of satellite imagery. The use of Synthetic Aperture Radar (SAR), with its cloud penetrating and day/night imaging capabilities, is emerging as a possible remote sensing tool for use in cloud affected territories. There has been success with airborne single-pass dual antennae systems (e.g. STAR 3i) and the Shuttle Radar Topographic Mapping (SRTM) mission. However, the use of these systems in the Caribbean are restrictive and datasets will not be generally available. The launching of imaging radar satellites such as ERS-1, ERS-2, Radarsat-1 and more recently Envisat have provided additional opportunities for augmenting the technologies available for generating medium accuracy, low cost, topographic information for developing countries by using the techniques of Radargrammetry (StereoSAR) and Interferometric SAR (InSAR). The primary aim of this research was to develop, from scratch, a prototype StereoSAR system based on automatic stereo matching and space intersection algorithms to generate medium accuracy, low cost DSMs, using various influencing parameters without any recourse to ground control points. The result was to be a software package to undertake this process for implementation on a personal computer. The DSMs generated from Radarsat-1 and Envisat SAR imagery were compared with a reference surface from airborne InSAR and conclusions with respect to the quality of the StereoSAR DSMs are presented. Work required to further improve the StereoSAR system is also suggested

    Digital Surface Modelling in Developing Countries Using Spaceborne SAR Techniques

    Get PDF
    Topographic databases at the national level, in the form of Digital Surface Models (DSMs), are required for a large number of applications which have been spurred on by the increased use of Geographic Information Systems (GIS). Ground-Based (surveying, GPS, etc.) and traditional airborne approaches to generating topographic information are proving to be time consuming and costly for applications in developing countries. Where these countries are located in the tropical zone, they are affected by the additional problem of cloud cover which could cause delays for almost 75% of the year in obtaining optical imagery. The Caribbean happens to be one such affected territory that is in need of national digital topographic information for its GIS database developments, 3D visualization of landscapes and for use in the digital ortho-rectification of satellite imagery. The use of Synthetic Aperture Radar (SAR), with its cloud penetrating and day/night imaging capabilities, is emerging as a possible remote sensing tool for use in cloud affected territories. There has been success with airborne single-pass dual antennae systems (e.g. STAR 3i) and the Shuttle Radar Topographic Mapping (SRTM) mission. However, the use of these systems in the Caribbean are restrictive and datasets will not be generally available. The launching of imaging radar satellites such as ERS-1, ERS-2, Radarsat-1 and more recently Envisat have provided additional opportunities for augmenting the technologies available for generating medium accuracy, low cost, topographic information for developing countries by using the techniques of Radargrammetry (StereoSAR) and Interferometric SAR (InSAR). The primary aim of this research was to develop, from scratch, a prototype StereoSAR system based on automatic stereo matching and space intersection algorithms to generate medium accuracy, low cost DSMs, using various influencing parameters without any recourse to ground control points. The result was to be a software package to undertake this process for implementation on a personal computer. The DSMs generated from Radarsat-1 and Envisat SAR imagery were compared with a reference surface from airborne InSAR and conclusions with respect to the quality of the StereoSAR DSMs are presented. Work required to further improve the StereoSAR system is also suggested

    Shaping and enforcing coordination spheres: probing the ability of tripodal ligands to favour trigonal prismatic geometry

    Get PDF
    The coordination chemistry of mono(2,2′-bipyrid-6-yl)bis(2-pyridyl)methanol (L1) and bis(2,2′-bipyrid-6-yl)mono(2-pyridyl)methanol (L2) are contrasted to tris(2,2′-bipyrid-6-yl)methanol (L3).L1andL2can produce octahedral complexes compared to the trigonal prismatic preference ofL3.</p

    Influence of magnetic fields on magneto-aerotaxis

    Get PDF
    The response of cells to changes in their physico-chemical micro-environment is essential to their survival. For example, bacterial magnetotaxis uses the Earth's magnetic field together with chemical sensing to help microorganisms move towards favoured habitats. The studies of such complex responses are lacking a method that permits the simultaneous mapping of the chemical environment and the response of the organisms, and the ability to generate a controlled physiological magnetic field. We have thus developed a multi-modal microscopy platform that fulfils these requirements. Using simultaneous fluorescence and high-speed imaging in conjunction with diffusion and aerotactic models, we characterized the magneto-aerotaxis of Magnetospirillum gryphiswaldense. We assessed the influence of the magnetic field (orientation; strength) on the formation and the dynamic of a micro-aerotactic band (size, dynamic, position). As previously described by models of magnetotaxis, the application of a magnetic field pointing towards the anoxic zone of an oxygen gradient results in an enhanced aerotaxis even down to Earth's magnetic field strength. We found that neither a ten-fold increase of the field strength nor a tilt of 45° resulted in a significant change of the aerotactic efficiency. However, when the field strength is zeroed or when the field angle is tilted to 90°, the magneto-aerotaxis efficiency is drastically reduced. The classical model of magneto-aerotaxis assumes a response proportional to the cosine of the angle difference between the directions of the oxygen gradient and that of the magnetic field. Our experimental evidence however shows that this behaviour is more complex than assumed in this model, thus opening up new avenues for research

    Oxygen requirement and inhibition of C4 photosynthesis

    Get PDF
    The basis for O2 sensitivity of C4 photosynthesis was evaluated using a C4-cycle-limited mutant of Amaranthus edulis (a phosphoenolpyruvate carboxylase-deficient mutant), and a C3-cyclelimited transformant of Flaveria bidentis (an antisense ribulose-1,5- bisphosphate carboxylase/oxygenase [Rubisco] small subunit transformant). Data obtained with the C4-cycle-limited mutant showed that atmospheric levels of O2 (20 kPa) caused increased inhibition of photosynthesis as a result of higher levels of photorespiration. The optimal O2 partial pressure for photosynthesis was reduced from approximately 5 kPa O2 to 1 to 2 kPa O2, becoming similar to that of C3 plants. Therefore, the higher O2 requirement for optimal C4 photosynthesis is specifically associated with the C4 function. With the Rubisco-limited F. bidentis, there was less inhibition of photosynthesis by supraoptimal levels of O2 than in the wild type. When CO2 fixation by Rubisco is limited, an increase in the CO2 concentration in bundle-sheath cells via the C4 cycle may further reduce the oxygenase activity of Rubisco and decrease the inhibition of photosynthesis by high partial pressures of O2 while increasing CO2 leakage and overcycling of the C4 pathway. These results indicate that in C4 plants the investment in the C3 and C4 cycles must be balanced for maximum efficiency

    Developing a research strategy to better understand, observe, and simulate urban atmospheric processes at kilometer to subkilometer scales

    Get PDF
    A Met Office/Natural Environment Research Council Joint Weather and Climate Research Programme workshop brought together 50 key international scientists from the UK and international community to formulate the key requirements for an Urban Meteorological Research strategy. The workshop was jointly organised by University of Reading and the Met Office

    Financial Systems and Industrial Policy in Germany and Great Britain: The Limits of Convergence

    Full text link

    Economic Analysis of Labor Markets and Labor Law: An Institutional/Industrial Relations Perspective

    Get PDF

    Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.

    Get PDF
    The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies
    corecore