13 research outputs found

    Carcass persistence and detectability : reducing the uncertainty surrounding wildlife-vehicle collision surveys

    Get PDF
    Carcass persistence time and detectability are two main sources of uncertainty on roadkill surveys. In this study, we evaluate the influence of these uncertainties on roadkill surveys and estimates. To estimate carcass persistence time, three observers (including the driver) surveyed 114km by car on a monthly basis for two years, searching for wildlife-vehicle collisions (WVC). Each survey consisted of five consecutive days. To estimate carcass detectability, we randomly selected stretches of 500m to be also surveyed on foot by two other observers (total 292 walked stretches, 146 km walked). We expected that body size of the carcass, road type, presence of scavengers and weather conditions to be the main drivers influencing the carcass persistence times, but their relative importance was unknown. We also expected detectability to be highly dependent on body size. Overall, we recorded low median persistence times (one day) and low detectability (<10%) for all vertebrates. The results indicate that body size and landscape cover (as a surrogate of scavengers' presence) are the major drivers of carcass persistence. Detectability was lower for animals with body mass less than 100g when compared to carcass with higher body mass. We estimated that our recorded mortality rates underestimated actual values of mortality by 2±10 fold. Although persistence times were similar to previous studies, the detectability rates here described are very different from previous studies. The results suggest that detectability is the main source of bias across WVC studies. Therefore, more than persistence times, studies should carefully account for differing detectability when comparing WVC studies

    Can the understory affect the Hymenoptera parasitoids in a Eucalyptus plantation?

    Get PDF
    The understory in forest plantations can increase richness and diversity of natural enemies due to greater plant species richness. The objective of this study was to test the hypothesis that the presence of the understory and climatic season in the region (wet or dry) can increase the richness and abundance of Hymenoptera parasitoids in Eucalyptus plantations, in the municipality of Belo Oriente, Minas Gerais State, Brazil. In each eucalyptus cultivation (five areas of cultivation) ten Malaise traps were installed, five with the understory and five without it. A total of 9,639 individuals from 30 families of the Hymenoptera parasitoids were collected, with Mymaridae, Scelionidae, Encyrtidae and Braconidae being the most collected ones with 4,934, 1,212, 619 and 612 individuals, respectively. The eucalyptus stands with and without the understory showed percentage of individuals 45.65% and 54.35% collected, respectively. The understory did not represent a positive effect on the overall abundance of the individuals Hymenoptera in the E. grandis stands, but rather exerted a positive effect on the specific families of the parasitoids of this order

    Antigenic extracts of Leishmania braziliensis and Leishmania amazonensis associated with saponin partially protects BALB/c mice against Leishmania chagasi infection by suppressing IL-10 and IL-4 production

    Get PDF
    This study evaluated two vaccine candidates for their effectiveness in protecting BALB/c mice against Leishmania chagasiinfection. These immunogenic preparations were composed of Leishmania amazonensisor Leishmania braziliensisantigenic extracts in association with saponin adjuvant. Mice were given three subcutaneous doses of one of these vaccine candidates weekly for three weeks and four weeks later challenged with promastigotes of L. chagasiby intravenous injection. We observed that both vaccine candidates induced a significant reduction in the parasite load of the liver, while the L. amazonensisantigenic extract also stimulated a reduction in spleen parasite load. This protection was associated with a suppression of both interleukin (IL)-10 and IL-4 cytokines by spleen cells in response to L. chagasiantigen. No change was detected in the production of IFN-&#947;. Our data show that these immunogenic preparations reduce the type 2 immune response leading to the control of parasite replication

    Cross-protective effect of a combined L5 plus L3 Leishmania major

    Get PDF
    Abstract Background Two Leishmania major ribosomal proteins L3 (LmL3) and L5 (LmL5) have been described as protective molecules against cutaneous leishmaniasis due to infection with L. major and Leishmania braziliensis in BALB/c mice when immunized with a Th1 adjuvant (non-methylated CpG-oligodeoxynucleotides; CpG-ODN). In the present study we analyzed the cross-protective efficacy of an LmL3-LmL5-CpG ODN combined vaccine against infection with Leishmania amazonensis and Leishmania chagasi (syn. Leishmania infantum) the etiologic agents of different clinical forms of human leishmaniasis in South America. Methods The combined vaccine was administered subcutaneously to BALB/c mice. After immunization the cellular and humoral responses elicited were analyzed. Mice were independently challenged with L. amazonensis and L. chagasi. The size of the cutaneous lesions caused by the infection with the first species, the parasite loads and the immune response in both infection models were analyzed nine weeks after challenge. Results Mice vaccinated with the combined vaccine showed a Th1-like response against LmL3 and LmL5. Vaccinated mice were able to delay lesion development due to L. amazonensis infection and to control parasite loads in the site of infection. A reduction of the parasite burden in the lymph nodes draining the site of infection and in the liver and spleen was observed in the vaccinated mice after a subcutaneous infection with L. chagasi. In both models of infection, protection was correlated to parasite antigen-specific production of IFN-γ and down-regulation of parasite-mediated IL-4 and IL-10 responses. Conclusions The data presented here demonstrate the potential use of L. major L3 and L5 recombinant ribosomal proteins for the development of vaccines against various Leishmania species.The study was supported in Spain by grants from Laboratorios LETI S.L.u-Fundación Severo Ochoa, from Ministerio de Ciencia e Innovación FIS/PI080101 and FIS PI11/00095 and from the Instituto de Salud Carlos III within the Network of Tropical Diseases Research (VI P I + D + I 2008–2011, ISCIII -Subdirección General de Redes y Centros de Investigación Cooperativa (RD12/0018/0009)).Peer Reviewe
    corecore