1,129 research outputs found

    Excitation spectrum of the homogeneous spin liquid

    Full text link
    We discuss the excitation spectrum of a disordered, isotropic and translationally invariant spin state in the 2D Heisenberg antiferromagnet. The starting point is the nearest-neighbor RVB state which plays the role of the vacuum of the theory, in a similar sense as the Neel state is the vacuum for antiferromagnetic spin wave theory. We discuss the elementary excitations of this state and show that these are not Fermionic spin-1/2 `spinons' but spin-1 excited dimers which must be modeled by bond Bosons. We derive an effective Hamiltonian describing the excited dimers which is formally analogous to spin wave theory. Condensation of the bond-Bosons at zero temperature into the state with momentum (pi,pi) is shown to be equivalent to antiferromagnetic ordering. The latter is a key ingredient for a microscopic interpretation of Zhang's SO(5) theory of cuprate superconductivityComment: RevTex-file, 16 PRB pages with 13 embedded eps figures. Hardcopies of figures (or the entire manuscript) can be obtained by e-mail request to: [email protected]

    Electron momentum distribution in underdoped cuprates

    Full text link
    We investigate the electron momentum distribution function (EMD) in a weakly doped two-dimensional quantum antiferromagnet (AFM) as described by the t-J model. Our analytical results for a single hole in an AFM based on the self-consistent Born approximation (SCBA) indicate an anomalous momentum dependence of EMD showing 'hole pockets' coexisting with a signature of an emerging large Fermi surface. The position of the incipient Fermi surface and the structure of the EMD is determined by the momentum of the ground state. Our analysis shows that this result remains robust in the presence of next-nearest neighbor hopping terms in the model. Exact diagonalization results for small clusters are with the SCBA reproduced quantitatively.Comment: 5 pages, submitted to PR

    Frenkel and charge transfer excitons in C60

    Full text link
    We have studied the low energy electronic excitations of C60 using momentum dependent electron energy-loss spectroscopy in transmission. The momentum dependent intensity of the gap excitation allows the first direct experimental determination of the energy of the 1Hg excitation and thus also of the total width of the multiplet resulting from the gap transition. In addition, we could elucidate the nature of the following excitations - as either Frenkel or charge transfer excitons.Comment: RevTEX, 3 Figures, to appear in Phys. Rev.

    Stripes in Doped Antiferromagnets: Single-Particle Spectral Weight

    Full text link
    Recent photoemission (ARPES) experiments on cuprate superconductors provide important guidelines for a theory of electronic excitations in the stripe phase. Using a cluster perturbation theory, where short-distance effects are accounted for by exact cluster diagonalization and long-distance effects by perturbation (in the hopping), we calculate the single-particle Green's function for a striped t-J model. The data obtained quantitatively reproduce salient (ARPES-) features and may serve to rule out "bond-centered" in favor of "site-centered" stripes.Comment: final version as appeared in PRL; (c) 2000 The American Physical Society; 4 pages, 4 figure

    Composite quasiparticle formation and the low-energy effective Hamiltonians of the one- and two-dimensional Hubbard Model

    Full text link
    We investigate the effect of hole doping on the strong-coupling Hubbard model at half-filling in spatial dimensions D≥1D\ge 1. We start with an antiferromagnetic mean-field description of the insulating state, and show that doping creates solitons in the antiferromagnetic background. In one dimension, the soliton is topological, spinless, and decoupled from the background antiferromagnetic fluctuations at low energies. In two dimensions and above, the soliton is non-topological, has spin quantum number 1/2, and is strongly coupled to the antiferromagnetic fluctuations. We derive the effective action governing the quasiparticle motion, study the properties of a single carrier, and comment on a possible description at finite concentration.Comment: REVTEX 3.0, 22 pages with 14 figures in the PostScript format compressed using uufile. Submitted to Phys. Rev. B. The complete PostScript file including figures can be obtained via ftp at ftp://serval.berkeley.edu/hubbard.ps . It is also available via www at http://roemer.fys.ku.dk/recent.ht

    Hall effect of charge carriers in a correlated system

    Full text link
    The dynamical Hall response in a correlated electronic system is analysed within the linear response theory for tight binding models. At T=0T=0 the d.c. Hall constant for a single quasiparticle is expressed explicitly via the charge stiffness, and a semiclassical result is recovered. As expected a hole-like response is found for the mobile hole introduced into a quantum antiferromagnet, as represented by the t−Jt-J model.Comment: 4 pages, RevTeX, no figure

    Bilayer Splitting in the Electronic Structure of Heavily Overdoped Bi2Sr2CaCu2O8+d

    Full text link
    The electronic structure of heavily overdoped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} is investigated by angle-resolved photoemission spectroscopy. The long-sought bilayer band splitting in this two-plane system is observed in both normal and superconducting states, which qualitatively agrees with the bilayer Hubbard model calculations. The maximum bilayer energy splitting is about 88 meV for the normal state feature, while it is only about 20 meV for the superconducting peak. This anomalous behavior cannot be reconciled with the quasiparticle picture.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Strong-Coupling Expansions for Multiparticle Excitations: Continuum and Bound States

    Full text link
    We present a new linked cluster expansion for calculating properties of multiparticle excitation spectra to high orders. We use it to obtain the two-particle spectra for systems of coupled spin-half dimers. We find that even for weakly coupled dimers the spectrum is very rich, consisting of many bound states. The number of bound states depends on both geometry of coupling and frustration. Many of the bound states can only be seen by going to sufficiently high orders in the perturbation theory, showing the extended character of the pair-attraction.Comment: 4 pages, 5 figure

    Angle resolved photoemission spectroscopy of Sr_2CuO_2Cl_2 - a revisit

    Full text link
    We have investigated the lowest binding-energy electronic structure of the model cuprate Sr_2CuO_2Cl_2 using angle resolved photoemission spectroscopy (ARPES). Our data from about 80 cleavages of Sr_2CuO_2Cl_2 single crystals give a comprehensive, self-consistent picture of the nature of the first electron-removal state in this model undoped CuO_2-plane cuprate. Firstly, we show a strong dependence on the polarization of the excitation light which is understandable in the context of the matrix element governing the photoemission process, which gives a state with the symmetry of a Zhang-Rice singlet. Secondly, the strong, oscillatory dependence of the intensity of the Zhang-Rice singlet on the exciting photon-energy is shown to be consistent with interference effects connected with the periodicity of the crystal structure in the crystallographic c-direction. Thirdly, we measured the dispersion of the first electron-removal states along G->(pi,pi) and G->(pi,0), the latter being controversial in the literature, and have shown that the data are best fitted using an extended t-J-model, and extract the relevant model parameters. An analysis of the spectral weight of the first ionization states for different excitation energies within the approach used by Leung et al. (Phys. Rev. B56, 6320 (1997)) results in a strongly photon-energy dependent ratio between the coherent and incoherent spectral weight. The possible reasons for this observation and its physical implications are discussed.Comment: 10 pages, 8 figure

    Magnetic Properties of YBa_2Cu_3O_{7-\delta} in a self-consistent approach: Comparison with Quantum-Monte-Carlo Simulations and Experiments

    Full text link
    We analyze single-particle electronic and two-particle magnetic properties of the Hubbard model in the underdoped and optimally-doped regime of \YBCO by means of a modified version of the fluctuation-exchange approximation, which only includes particle-hole fluctuations. Comparison of our results with Quantum-Monte Carlo (QMC) calculations at relatively high temperatures (T∼1000KT\sim 1000 K) suggests to introduce a temperature renormalization in order to improve the agreement between the two methods at intermediate and large values of the interaction UU. We evaluate the temperature dependence of the spin-lattice relaxation time T1T_1 and of the spin-echo decay time T2GT_{2G} and compare it with the results of NMR measurements on an underdoped and an optimally doped \YBCO sample. For U/t=4.5U/t=4.5 it is possible to consistently adjust the parameters of the Hubbard model in order to have a good {\it semi-quantitative} description of this temperature dependence for temperatures larger than the spin gap as obtained from NMR measurements. We also discuss the case U/t∼8U/t\sim 8, which is more appropriate to describe magnetic and single-particle properties close to half-filling. However, for this larger value of U/tU/t the agreement with QMC as well as with experiments at finite doping is less satisfactory.Comment: Final version, to appear in Phys. Rev. B (sched. Feb. 99
    • …
    corecore