6,285 research outputs found

    The Henize sample of S stars. I. The technetium dichotomy

    Full text link
    This paper is the first one in a series investigating the properties of the S stars belonging to the Henize sample (205 S stars with delta<-25 deg. and R<10.5) in order to derive the respective properties (like galactic distribution and relative frequencies) of intrinsic (i.e. genuine asymptotic giant branch) S stars and extrinsic (i.e. post mass-transfer binary) S stars. High-resolution (R=30 000 to 60 000) spectra covering the range 4230-4270AA have been obtained for 76 S stars, 8 M stars and 2 symbiotic stars. The 4262AA and 4238AA blends involving a Tc I line were analysed separately and yield consistent conclusions regarding the presence or absence of technetium. Only one `transition' case (Hen 140 = HD 120179, a star where only weak lines of technetium are detectable) is found in our sample. A resolution greater than R =30 000 is clearly required in order to derive unambiguous conclusions concerning the presence or absence of technetium. The Tc/no Tc dichotomy will be correlated with radial velocity and photometric data in a forthcoming paper.Comment: 10 pages, 5 figures, Latex, accepted for publication in Astronomy and Astrophysics main journal. Also available at http://astro.ulb.ac.be

    Cosmic abundances: The impact of stellar duplicity

    Full text link
    The mass-transfer scenario links chemical peculiarities with stellar duplicity for an increasing number of stellar classes (classical and dwarf barium stars, subgiant and giant CH stars, S stars without technetium, yellow symbiotic stars, WIRRING stars, Abell-35-like nuclei of planetary nebulae...). Despite these successes, the mass-transfer scenario still faces several problems: What is the mass-transfer mode? Why orbital elements of dwarf barium stars do not fully match those of the classical barium stars? What is the origin of the few non-binary stars among dwarf barium stars? The paper reviews these open questions.Comment: 14 pages, 4 figures, to appear in `Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis', edited by F.N. Bash, T.G. Barnes, ASP Conf. Ser., in pres

    The Henize sample of S stars: IV. New symbiotic stars

    Full text link
    The properties of the few symbiotic stars detected among the 66 binary S stars from the Henize sample are discussed. Two stars (Hen 18 and Hen 121) exhibit both a strong blue-violet continuum and strong H_alpha emission (FWHM of 70 km/s), whereas Hen 134 and 137 exhibit weak H_alpha emission. The H_alpha profiles are typical of non-dusty symbiotic stars belonging to class S-3 as defined by Van Winckel et al. (1993, A&AS 102, 401). In that class as in the Henize symbiotic S stars, He I, [N II] or [S II] emission lines are absent, suggesting that the nebular density is high but the excitation rather low. The radial velocity of the centre of the H_alpha emission is identical to that of the companion star (at least for Hen 121 where this can be checked from the available orbital elements), thus suggesting that the H_alpha emission originates from gas moving with the companion star. For Hen 121, this is further confirmed by the disappearance of the ultraviolet Balmer continuum when the companion is eclipsed by the S star. Hen 121 is thus the second eclipsing binary star discovered among extrinsic S stars (the first one is HD 35155). A comparison of the available data on orbital periods and H_alpha emission leads to the conclusion that H_alpha emission in S stars seems to be restricted to binary systems with periods in the range 600 - 1000 d, in agreement with the situation prevailing for red symbiotic stars (excluding symbiotic novae). Symbiotic S stars are found among the most evolved extrinsic S stars.Comment: 10 pages, 9 figures, accepted for publication in Astronomy and Astrophysic

    A holistic approach to carbon-enhanced metal-poor stars

    Full text link
    By considering the various CEMP subclasses separately, we try to derive, from the specific signatures imprinted on the abundances, parameters (such as metallicity, mass, temperature, and neutron source) characterizing AGB nucleosynthesis from the specific signatures imprinted on the abundances, and separate them from the impact of thermohaline mixing, first dredge-up, and dilution associated with the mass transfer from the companion.To put CEMP stars in a broad context, we collect abundances for about 180 stars of various metallicities, luminosity classes, and abundance patterns, from our own sample and from literature. First, we show that there are CEMP stars which share the properties of CEMP-s stars and CEMP-no stars (which we call CEMP-low-s stars). We also show that there is a strong correlation between Ba and C abundances in the s-only CEMP stars. This strongly points at the operation of the 13C neutron source in low-mass AGB stars. For the CEMP-rs stars (seemingly enriched with elements from both the s- and r-processes), the correlation of the N abundances with abundances of heavy elements from the 2nd and 3rd s-process peaks bears instead the signature of the 22Ne neutron source. Adding the fact that CEMP-rs stars exhibit O and Mg enhancements, we conclude that extremely hot conditions prevailed during the thermal pulses of the contaminating AGB stars. Finally, we argue that most CEMP-no stars (with no overabundances for the neutron-capture elements) are likely the extremely metal-poor counterparts of CEMP neutron-capture-rich stars. We also show that the C enhancement in CEMP-no stars declines with metallicity at extremely low metallicity ([Fe/H]~< -3.2). This trend is not predicted by any of the current AGB models.Comment: 27 pages, 24 figures, accepted for publication in A&

    IP Eri: A surprising long-period binary system hosting a He white dwarf

    Full text link
    We determine the orbital elements for the K0 IV + white dwarf (WD) system IP Eri, which appears to have a surprisingly long period of 1071 d and a significant eccentricity of 0.25. Previous spectroscopic analyses of the WD, based on a distance of 101 pc inferred from its Hipparcos parallax, yielded a mass of only 0.43 M_\odot, implying it to be a helium-core WD. The orbital properties of IP Eri are similar to those of the newly discovered long-period subdwarf B star (sdB) binaries, which involve stars with He-burning cores surrounded by extremely thin H envelopes, and are therefore close relatives to He WDs. We performed a spectroscopic analysis of high-resolution spectra from the HERMES/Mercator spectrograph and concluded that the atmospheric parameters of the K0 component are Teff=4960T_{\rm eff} = 4960 K, logg=3.3\log{g} = 3.3, [Fe/H] = 0.09 and ξ=1.5\xi = 1.5 km/s. The detailed abundance analysis focuses on C, N, O abundances, carbon isotopic ratio, light (Na, Mg, Al, Si, Ca, Ti) and s-process (Sr, Y, Zr, Ba, La, Ce, Nd) elements. We conclude that IP Eri abundances agree with those of normal field stars of the same metallicity. The long period and non-null eccentricity indicate that this system cannot be the end product of a common-envelope phase; it calls instead for another less catastrophic binary-evolution channel presented in detail in a companion paper (Siess et al. 2014).Comment: 14 pages, 10 figures, 4 tables, accepted for publication in A&A (Update of Table 3, Fig. 8 and text in Sect. 5.1, 5.3 and 6 due to minor corrections on N and Y II

    A CORAVEL radial-velocity monitoring of giant Ba and S stars: spectroscopic orbits and intrinsic variations

    Full text link
    This paper provides orbital parameters for 38 barium stars and 10 extrinsic S stars derived from a decade-long CORAVEL monitoring. Lower bounds on the orbital period (generally exceeding 10 y) have been obtained for 10 more systems. Mira S, SC and (Tc-poor) C stars have also been monitored and show intrinsic radial-velocity variations due to atmospheric phenomena. Tentative orbital solutions are proposed for 3 stars (S UMa, X Cnc, BD-08:1900) where the velocity and photometric periods are different. Three stars (RZ Peg, SS Vir and R CMi) exhibit radial-velocity variations synchronous with the light variations. Pseudo-orbital solutions have been derived for those stars. In the case of RZ Peg, a line-doubling phenomenon is observed near maximum light, and probably reflects the shock wave propagating through the photosphere.Comment: Astronomy & Astrophysics Supplements, 20 pages, 8 figures, 8 tables (LaTeX). Also available at: http://obswww.unige.ch/~udry/cine/barium/barium.htm

    Atlas of protein sequence and structure

    Get PDF
    Atlas of protein sequence and structur

    Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC

    Full text link
    The radiative corrections of the strong and electroweak interactions are calculated at next-to-leading order for Higgs-boson production in the weak-boson-fusion channel at hadron colliders. Specifically, the calculation includes all weak-boson fusion and quark--antiquark annihilation diagrams to Higgs-boson production in association with two hard jets, including all corresponding interferences. The results on the QCD corrections confirm that previously made approximations of neglecting s-channel diagrams and interferences are well suited for predictions of Higgs production with dedicated vector-boson fusion cuts at the LHC. The electroweak corrections, which also include real corrections from incoming photons and leading heavy-Higgs-boson effects at two-loop order, are of the same size as the QCD corrections, viz. typically at the level of 5-10% for a Higgs-boson mass up to \sim 700 GeV. In general, both types of corrections do not simply rescale differential distributions, but induce distortions at the level of 10%. The discussed corrections have been implemented in a flexible Monte Carlo event generator.Comment: 33 pages, LaTeX, 24 postscript figure
    corecore