505 research outputs found

    Combination of searches for heavy spin-1 resonances using 139 fb − 1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at s = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, tt¯, and tb) or third-generation leptons (τν and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Search for new phenomena with top-quark pairs and large missing transverse momentum using 140 fb − 1 of pp collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A search is conducted for new phenomena in events with a top quark pair and large missing transverse momentum, where the top quark pair is reconstructed in final states with one isolated electron or muon and multiple jets. The search is performed using the Large Hadron Collider proton-proton collision data sample at a centre-of-mass energy of s = 13 TeV recorded by the ATLAS detector that corresponds to an integrated luminosity of 140 fb−1. An analysis based on neural network classifiers is optimised to search for directly produced pairs of supersymmetric partners of the top quark (stop), and to search for spin-0 mediators, produced in association with a pair of top quarks, that decay into dark-matter particles. In the stop search, the analysis is designed to target models in which the mass difference between the stop and the neutralino from the stop decay is close to the top quark mass. This new search is combined with previously published searches in final states with different lepton multiplicities. No significant excess above the Standard Model background is observed, and limits at 95% confidence level are set. Models with neutralinos with masses up to 570 GeV are excluded, while for small neutralino masses models are excluded for stop masses up to 1230 GeV. Scalar (pseudoscalar) dark matter mediator masses as large as 350 (370) GeV are excluded when the coupling strengths of the mediator to Standard Model and dark-matter particles are both set to one. At lower mediator masses, models with production cross-sections as small as 0.15 (0.16) times the nominal predictions are excluded. Results of this search are also used to set constraints on effective four-fermion contact interactions between top quarks and neutrinos

    Search for heavy neutral Higgs bosons decaying into a top quark pair in 140 fb − 1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A search for heavy pseudo-scalar (A) and scalar (H) Higgs bosons decaying into a top-quark pair (tt¯) has been performed with 140 fb−1 of proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider at a centre-of-mass energy of s = 13 TeV. Interference effects between the signal process and Standard Model (SM) tt¯ production are taken into account. Final states with exactly one or exactly two electrons or muons are considered. No significant deviation from the SM prediction is observed. The results of the search are interpreted in the context of a two-Higgs-doublet model (2HDM) of type II in the alignment limit with mass-degenerate pseudo-scalar and scalar Higgs bosons (mA = mH) and the hMSSM parameterisation of the minimal supersymmetric extension of the Standard Model. Ratios of the two vacuum expectation values, tan β, smaller than 3.49 (3.16) are excluded at 95% confidence level for mA = mH = 400 GeV in the 2HDM (hMSSM). Masses up to 1240 GeV are excluded for the lowest tested tan β value of 0.4 in the 2HDM. In the hMSSM, masses up to 950 GeV are excluded for tan β = 1.0. In addition, generic exclusion limits are derived separately for single scalar and pseudo-scalar states for different choices of their mass and total width

    Inclusive and differential cross-section measurements of t t ¯ Z production in pp collisions at s = 13 TeV with the ATLAS detector, including EFT and spin-correlation interpretations

    Get PDF
    Measurements of both the inclusive and differential production cross sections of a top-quark-top-antiquark pair in association with a Z boson (tt¯Z) are presented. Final states with two, three or four isolated leptons (electrons or muons) are targeted. The measurements use the data recorded by the ATLAS detector in pp collisions at s = 13 TeV at the Large Hadron Collider during the years 2015–2018, corresponding to an integrated luminosity of 140 fb−1. The inclusive cross section is measured to be σtt¯Z = 0.86 ± 0.04 (stat.) ± 0.04 (syst.) pb and found to be in agreement with the most advanced Standard Model predictions. The differential measurements are presented as a function of a number of observables that probe the kinematics of the tt¯Z system. Both the absolute and normalised differential cross-section measurements are performed at particle level and parton level for specific fiducial volumes, and are compared with NLO+NNLL theoretical predictions. The results are interpreted in the framework of Standard Model effective field theory and used to set limits on a large number of dimension-6 operators involving the top quark. The first measurement of spin correlations in tt¯Z events is presented: the results are in agreement with the Standard Model expectations, and the null hypothesis of no spin correlations is disfavoured with a significance of 1.8 standard deviations

    Studies of new Higgs boson interactions through nonresonant HH production in the b b ¯ γγ final state in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    A search for nonresonant Higgs boson pair production in the bb¯γγ final state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this final state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifier κλ but also of the quartic HHVV (V = W, Z) coupling modifier κ2V. No significant excess above the expected background from Standard Model processes is observed. An observed upper limit μHH < 4.0 is set at 95% confidence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confidence intervals for the coupling modifiers are −1.4 < κλ < 6.9 and −0.5 < κ2V < 2.7, assuming all other Higgs boson couplings except the one under study are fixed to the Standard Model predictions. The results are interpreted in the Standard Model effective field theory and Higgs effective field theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions

    Measurements of electroweak W ± Z boson pair production in association with two jets in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    Measurements of integrated and differential cross-sections for electroweak W±Z production in association with two jets (W±Zjj) in proton-proton collisions are presented. The data collected by the ATLAS detector at the Large Hadron Collider from 2015 to 2018 at a centre-of-mass energy of s = 13 TeV are used, corresponding to an integrated luminosity of 140 fb−1. The W±Zjj candidate events are reconstructed using leptonic decay modes of the gauge bosons. Events containing three identified leptons, either electrons or muons, and two jets are selected. Processes involving pure electroweak W±Zjj production at Born level are separated from W±Zjj production involving a strong coupling. The measured integrated fiducial cross-section of electroweak W±Zjj production per lepton flavour is σWZjj−EW→ℓ′νlljj = 0.368 ± 0.037 (stat.) ± 0.059 (syst.) ± 0.003 (lumi.) fb, where ℓ and ℓ′ are either an electron or a muon. Respective cross-sections of electroweak and strong W±Zjj production are measured separately for events with exactly two jets or with more than two jets, and in three bins of the invariant mass of the two jets. The inclusive W±Zjj production cross-section, without separating electroweak and strong production, is also measured to be σWZjj→ℓ′νlljj = 1.462 ± 0.063 (stat.) ± 0.118 (syst.) ± 0.012 (lumi.) fb, per lepton flavour. The inclusive W±Zjj production cross-section is measured differentially for several kinematic observables. Finally, the measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confidence level intervals on dimension-8 operators

    Electron and photon efficiencies in LHC Run 2 with the ATLAS experiment

    Get PDF
    Precision measurements of electron reconstruction, identification, and isolation efficiencies and photon identification efficiencies are presented. They use the full Run 2 data sample collected by the ATLAS experiment in pp collisions at a centre-of-mass energy of 13 TeV during the years 2015–2018, corresponding to an integrated luminosity of 139 fb−1. The measured electron identification efficiencies have uncertainties that are around 30%–50% smaller than the previous Run 2 results due to an improved methodology and the inclusion of more data. A better pile-up subtraction method leads to electron isolation efficiencies that are more independent of the amount of pile-up activity. Updated photon identification efficiencies are also presented, using the full Run 2 data. When compared to the previous measurement, a 30%–40% smaller uncertainty is observed on the photon identification efficiencies, thanks to the increased amount of available data

    Observation of electroweak production of W + W − in association with jets in proton-proton collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    A measurement of the production of W bosons with opposite electric charges in association with two jets is presented based on 140 fb−1 of data collected by the ATLAS detector in proton-proton collisions at s = 13 TeV. The analysis is sensitive to the scattering of W bosons, which is of particular interest in the ATLAS physics programme as it can be used to probe the electroweak symmetry breaking mechanism of the Standard Model. This signal is observed with a significance of 7.1 standard deviations above the background expectation, while 6.2 standard deviations were expected. The measured cross-section is determined in a signal-enriched fiducial volume and is found to be 2.7 ± 0.5 fb, which is consistent with the theoretical prediction of 2.20−0.13+0.14 fb

    Search for non-resonant Higgs boson pair production in the 2 b + 2 â„“ + E T miss final state in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    A search for non-resonant Higgs boson pair (HH) production is presented, in which one of the Higgs bosons decays to a b-quark pair (bb¯) and the other decays to WW*, ZZ*, or τ+τ−, with in each case a final state with ℓ+ℓ−+ neutrinos (ℓ = e, μ). The analysis targets separately the gluon-gluon fusion and vector boson fusion production modes. Data recorded by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 140 fb−1, are used in this analysis. Events are selected to have exactly two b-tagged jets and two leptons with opposite electric charge and missing transverse momentum in the final state. These events are classified using multivariate analysis algorithms to separate the HH events from other Standard Model processes. No evidence of the signal is found. The observed (expected) upper limit on the cross-section for non-resonant Higgs boson pair production is determined to be 9.7 (16.2) times the Standard Model prediction at 95% confidence level. The Higgs boson self-interaction coupling parameter κλ and the quadrilinear coupling parameter κ2V are each separately constrained by this analysis to be within the ranges [−6.2, 13.3] and [−0.17, 2.4], respectively, at 95% confidence level, when all other parameters are fixed

    A search for top-squark pair production, in final states containing a top quark, a charm quark and missing transverse momentum, using the 139 fb − 1 of pp collision data collected by the ATLAS detector

    Get PDF
    This paper presents a search for top-squark pair production in final states with a top quark, a charm quark and missing transverse momentum. The data were collected with the ATLAS detector during LHC Run 2 and correspond to an integrated luminosity of 139 fb−1 of proton-proton collisions at a centre-of-mass energy of s = 13 TeV. The analysis is motivated by an extended Minimal Supersymmetric Standard Model featuring a non-minimal flavour violation in the second- and third-generation squark sector. The top squark in this model has two possible decay modes, either t~1→cχ~10 or t~1→tχ~10, where the χ~10 is undetected. The analysis is optimised assuming that both of the decay modes are equally probable, leading to the most likely final state of tc+ETmiss. Good agreement is found between the Standard Model expectation and the data in the search regions. Exclusion limits at 95% CL are obtained in the mt~1 vs. mχ~10 plane and, in addition, limits on the branching ratio of the t~1→tχ~10 decay as a function of m(t~1) are also produced. Top-squark masses of up to 800 GeV are excluded for scenarios with light neutralinos, and top-squark masses up to 600 GeV are excluded in scenarios where the neutralino and the top squark are almost mass degenerate
    • …
    corecore