6,784 research outputs found

    A diquark model for baryons containing one heavy quark

    Full text link
    We present a phenomenological ansatz for coupling a heavy quark with two light quarks to form a heavy baryon. The heavy quark is treated in the heavy mass limit, and the light quark dynamics is approximated by propagating scalar and axial vector 'diquarks'. The resulting effective lagrangian, which incorporates heavy quark and chiral symmetry, describes interactions of heavy baryons with Goldstone bosons in the low energy region. As an application, the Isgur--Wise form factors are estimated.Comment: 9 pages + 8 figures, both as uuencoded PS, discussion of Bjorken limit (1 par + 1 fig) added, to appear in Z.Phys.

    Mesons and diquarks in neutral color superconducting quark matter with β\beta-equilibrium

    Get PDF
    The spectrum of meson and diquark excitations in cold color-superconducting (2SC) quark matter is investigated under local color and electric neutrality constraints with β\beta-equilibrium. A 2-flavored Nambu--Jona-Lasinio type model including a baryon μB\mu_B, color μ8\mu_8, and electric μQ\mu_Q chemical potentials is used. Two relations between coupling constants HH and GG in the diquark- and quark-antiquark channels, correspondingly, are treated, H=3G/4H=3G/4 and H=GH=G. At H=3G/4H=3G/4 the gapless- and at H=GH=G the gapped neutral color superconductivity is realized. It is shown that color and electrical neutrality together with β\beta-equilibrium lead to a strong mass splitting within the pion isotriplet in the 2SC phase (both gapped and gapless), in contrast with non--neutral matter. It is also shown that the properties of the physical SU(2)cSU(2)_c-singlet diquark excitation in the 2SC ground state varies for different parameterization schemes. Thus, for H=3G/4H=3G/4 one finds a heavy resonance with mass \sim 1100 MeV in the non--neutral (gapped) case, whereas, if neutrality is imposed, a stable diquark with mass μQ\sim\mu_Q\sim 200 MeV appears in the gapless 2SC phase. For H=GH=G, there is again a resonance (with the mass \sim 300 MeV) in the neutral gapped 2SC phase. Hence, the existence of the stable massive SU(2)c_c-singlet diquark excitation is a new peculiarity of the gapless 2SC.Comment: 18 pages, 9 figures; version accepted for publication in PR

    Dimensional structural constants from chiral and conformal bosonization of QCD

    Get PDF
    We derive the dimensional non-perturbative part of the QCD effective action for scalar and pseudoscalar meson fields by means of chiral and conformal bosonization. The related structural coupling constants L_5 and L_8 of the chiral lagrangian are estimated using general relations which are valid in a variety of chiral bosonization models without explicit reference to model parameters. The asymptotics for large scalar fields in QCD is elaborated, and model-independent constraints on dimensional coupling constants of the effective meson lagrangian are evaluated. We determine also the interaction between scalar quarkonium and the gluon density and obtain the scalar glueball-quarkonium potential.Comment: 21 pages, LaTe

    Color superconductivity in the static Einstein Universe

    Get PDF
    We study the behavior of quark and diquark condensates in dense quark matter under the influence of a gravitational field adopting as a simple model the static DD-dimensional Einstein Universe. Calculations are performed in the framework of the extended Nambu--Jona-Lasinio model at finite temperature and quark density on the basis of the thermodynamic potential and the gap equations. Quark and diquark condensates as functions of the chemical potential and temperature at different values of the curvature have been studied. Phase portraits of the system have been constructed

    Rare radiative B decays to orbitally excited K mesons

    Get PDF
    The exclusive rare radiative B meson decays to orbitally excited axial-vector mesons K_1^*(1270), K_1(1400) and to the tensor meson K_2^*(1430) are investigated in the framework of the relativistic quark model based on the quasipotential approach in quantum field theory. These decays are considered without employing the heavy quark expansion for the s quark. Instead the s quark is treated to be light and the expansion in inverse powers of the large recoil momentum of the final K^{**} meson is used to simplify calculations. It is found that the ratio of the branching fractions of rare radiative B decays to axial vector K^*_1(1270) and K_1(1400) mesons is significantly influenced by relativistic effects. The obtained results for B decays to the tensor meson K_2^*(1430) agree with recent experimental data from CLEO.Comment: 17 pages, revte

    The exclusive B_s -> phi mu+ mu- process in a constituent quark model

    Full text link
    We consider the exclusive B_s -> phi mu+ mu- process in the standard model using a constituent quark loop model approach together with a simple parameterization of the quark dynamics. The model allows to compute the decay form factors and therefore can give predictions for the decay rates, the invariant mass spectra and the asymmetries. This process is suppressed in the standard model but can be enhanced if new physics beyond the standard model is present, such as flavor-violating supersymmetric models. It constitutes therefore an interesting precision test of the standard model at forthcoming experiments.Comment: 17 pages, 6 figures, 5 tables, LaTeX; minor changes to the introduction, table III and figure 3. Few references adde

    Vector interaction, charge neutrality and multiple chiral critical point structures

    Full text link
    We investigate the combined effect of the repulsive vector interaction and the positive electric chemical potential on the chiral phase transition by considering neutral color superconductivity (CSC). The chiral condensate, diquark condensate and quark number densities are solved in both two-flavor and two-plus-one-flavor Nambu-Jona-Lasinio(NJL) models with the so called Kobayashi-Maskawa-'t Hooft term under the charge neutrality constraint. We demonstrate that multiple chiral critical-point structures always exist in the NJL model within the self-consistent mean-field approximation and the number of chiral critical points can vary from zero to four, which is dependent on the magnitudes of vector interaction and the diquark coupling. The difference between the dynamical chemical potentials induced by vector interaction for u and d quarks can effectively reduce the Fermi sphere disparity between the two flavors of diquark paring. Thus the vector interaction works to significantly suppress the unstable region associated with chromomagnetic instability in the phase of neutral asymmetric homogenous CSC.Comment: version for Phys. Rev.

    Quark and pion condensation in a chromomagnetic background field

    Full text link
    The general features of quark and pion condensation in dense quark matter with flavor asymmetry have been considered at finite temperature in the presence of a chromomagnetic background field modelling the gluon condensate. In particular, pion condensation in the case of a constant abelian chromomagnetic field and zero temperature has been studied both analytically and numerically. Under the influence of the chromomagnetic background field the effective potential of the system is found to have a global minimum for a finite pion condensate even for small values of the effective quark coupling constant. In the strong field limit, an effective dimensional reduction has been found to take place.Comment: 17 pages, 6 figure

    Finite size effects in the Gross-Neveu model with isospin chemical potential

    Full text link
    The properties of the two-flavored Gross-Neveu model in the (1+1)-dimensional R1×S1R^1\times S^1 spacetime with compactified space coordinate are investigated in the presence of the isospin chemical potential μI\mu_I. The consideration is performed in the limit NcN_c\to\infty, i.e. in the case with infinite number of colored quarks. It is shown that at L=L=\infty (LL is the length of the circumference S1S^1) the pion condensation phase is realized for arbitrary small nonzero μI\mu_I. At finite values of LL, the phase portraits of the model in terms of parameters νμI\nu\sim\mu_I and λ1/L\lambda\sim 1/L are obtained both for periodic and antiperiodic boundary conditions of the quark field. It turns out that in the plane (λ,ν)(\lambda,\nu) there is a strip 0λ<λc0\le\lambda<\lambda_c which lies as a whole inside the pion condensed phase. In this phase the pion condensation gap is an oscillating function vs both λ\lambda (at fixed ν\nu) and ν\nu (at fixed λ\lambda).Comment: 12 pages, 8 figures; one reference added; accepted for publication in PR

    Mesons and diquarks in the color neutral 2SC phase of dense cold quark matter

    Full text link
    The spectrum of meson and diquark excitations of dense color neutral cold quark matter is investigated in the framework of a 2-flavored Nambu--Jona-Lasinio type model, including a quark μ\mu- and color μ8\mu_8 chemical potential. It was found out that in the color superconducting (2SC) phase, i.e. at μ>μc=342\mu>\mu_c=342 MeV, μ8\mu_8 aquires rather small values \sim 10 MeV in order to ensure the color neutrality. In this phase the π\pi- and σ\sigma meson masses are evaluated around \sim 330 MeV. The spectrum of scalar diquarks in the color neutral 2SC phase consists of a heavy (SUc(2)\rm SU_c(2)-singlet) resonance with mass \sim 1100 MeV, four light diquarks with mass 3μ83|\mu_8|, and one Nambu --Goldstone boson which is in accordance with the Goldstone theorem. Moreover, in the 2SC phase there are five light stable particles as well as a heavy resonance in the spectrum of pseudo-scalar diquarks. In the color symmetric phase, i.e. for μ<μc\mu <\mu_c, a mass splitting of scalar diquarks and antidiquarks is shown to arise if μ0\mu\ne 0, contrary to the case of μ=0\mu = 0, where the masses of scalar antidiquarks and diquarks are degenerate at the value \sim~700 MeV. If the coupling strength in the pseudo-scalar diquark channel is the same as in the scalar diquark one (as for QCD-inspired NJL models), then in the color symmetric phase pseudo-scalar diquarks are not allowed to exist as stable particles.Comment: 18 pages, 4 figures; version accepted for the publication in PR
    corecore