12,755 research outputs found
Charm mass corrections to the bottomonium mass spectrum
The one-loop corrections to the bottomonium mass spectrum due to the finite
charm mass are evaluated in the framework of the relativistic quark model. The
obtained corrections are compared with the results of perturbative QCD.Comment: 6 pages, references added, version to be published in Phys. Rev.
Relativistic description of the charmonium mass spectrum
The charmonium mass spectrum is considered in the framework of the
constituent quark model with the relativistic treatment of the c quark. The
obtained masses are in good agreement with the existing experimental data
including the mass of eta_c(2S).Comment: 5 page
Masses of light tetraquarks and scalar mesons in the relativistic quark model
Masses of the ground state light tetraquarks are dynamically calculated in
the framework of the relativistic diquark-antidiquark picture. The internal
structure of the diquark is taken into account by calculating the form factor
of the diquark-gluon interaction in terms of the overlap integral of the
diquark wave functions. It is found that scalar mesons with masses below 1 GeV:
f_0(600) (\sigma), K^*_0(800) (\kappa), f_0(980) and a_0(980) agree well with
the light tetraquark interpretation.Comment: 9 pages, Report-no adde
Spin projection and spin current density within relativistic electronic transport calculations
A spin projection scheme is presented which allows the decomposition of the
electric conductivity into two different spin channels within fully
relativistic transport calculations that account for the impact
of spin-orbit coupling. This is demonstrated by calculations of the
spin-resolved conductivity of FeCr and CoPt disordered
alloys on the basis of the corresponding Kubo-Greenwood equation implemented
using the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA)
band structure method. In addition, results for the residual resistivity of
diluted Ni-based alloys are presented that are compared to theoretical and
experimental ones that rely on Mott's two-current model for spin-polarized
systems. The application of the scheme to deal with the spin-orbit induced spin
Hall effect is discussed in addition
Stability of negative ionization fronts: regularization by electric screening?
We recently have proposed that a reduced interfacial model for streamer
propagation is able to explain spontaneous branching. Such models require
regularization. In the present paper we investigate how transversal Fourier
modes of a planar ionization front are regularized by the electric screening
length. For a fixed value of the electric field ahead of the front we calculate
the dispersion relation numerically. These results guide the derivation of
analytical asymptotes for arbitrary fields: for small wave-vector k, the growth
rate s(k) grows linearly with k, for large k, it saturates at some positive
plateau value. We give a physical interpretation of these results.Comment: 11 pages, 2 figure
- …