26 research outputs found
Cosmic-ray strangelets in the Earth's atmosphere
If strange quark matter is stable in small lumps, we expect to find such
lumps, called ``strangelets'', on Earth due to a steady flux in cosmic rays.
Following recent astrophysical models, we predict the strangelet flux at the
top of the atmosphere, and trace the strangelets' behavior in atmospheric
chemistry and circulation. We show that several strangelet species may have
large abundances in the atmosphere; that they should respond favorably to
laboratory-scale preconcentration techniques; and that they present promising
targets for mass spectroscopy experiments.Comment: 28 pages, 4 figures, revtex
Research of working area development parameters in conditions of deep steep deposit finalizing
Отримано формули розрахунку об’єму запасів корисних копалин в приконтурній та глибинній зоні. Встановлено характер впливу параметрів доробки глибоких крутоспадних родовищ відкритим способом на доцільне положення поточних та проектних контурів кар’єру. Встановлено, що найменший середній коефіцієнт розкриву досягається при мінімальному значенні суми обсягів корисної копалини приконтурної зони лежачого і висячого боків покладу в проектному положенні. Найменший поточний коефіцієнт розкриву досягається при мінімальному значенні суми обсягів корисної копалини приконтурної зони лежачого і висячого боків покладу, а також робочого борту кар'єру в поточному положенні
M.N.: Unified particle swarm optimization for solving constrained engineering optimization problems
Abstract. We investigate the performance of the recently proposed Unified Particle Swarm Optimization method on constrained engineering optimization problems. For this purpose, a penalty function approach is employed and the algorithm is modified to preserve feasibility of the encountered solutions. The algorithm is illustrated on four well–known engineering problems with promising results. Comparisons with the standard local and global variant of Particle Swarm Optimization are reported and discussed.
Evolutionary computation techniques for optimizing fuzzy cognitive maps in radiation therapy systems
Abstract. The optimization of a Fuzzy Cognitive Map model for the supervision and monitoring of the radiotherapy process is proposed. This is performed through the minimization of the corresponding objective function by using the Particle Swarm Optimization and the Differential Evolution algorithms. The proposed approach determines the cause–effect relationships among the concepts of the supervisor–Fuzzy Cognitive Map by computing its optimal weight matrix, through extensive experiments. Results are reported and discussed.
Computing Nash equilibria through computational intelligence methods
Nash equilibrium constitutes a central solution concept in game theory. The task of detecting the Nash equilibria of a finite strategic game remains a challenging problem up-to-date. This paper investigates the effectiveness of three computational intelligence techniques, namely, covariance matrix adaptation evolution strategies, particle swarm optimization, as well as, differential evolution, to compute Nash equilibria of finite strategic games, as global minima of a real-valued, nonnegative function. An issue of particular interest is to detect more than one Nash equilibria of a game. The performance of the considered computational intelligence methods on this problem is investigated using multistart and deflection