30 research outputs found

    Methodology of tolerance synthesis using bond graph

    Get PDF
    International audienceThis paper presents a methodology of parametric tolerance synthesis with respect to output aleatory uncertainty specifications. It relies on density function propagation through the inverse model. The resulting parameter density function is then used to synthesize a confidence interval suitable for sizing purpose. As an illustration, parametric tolerance synthesis on a DC motor rotating a load is processed

    Tolerance synthesis using bond graph inversion and fuzzy logic

    Get PDF
    International audienceIn the context of mechatronic systems design, this paper addresses a parameter tolerance synthesis with respect to specifications including output epistemic uncertainties. The methodology proposed here concerns uncertainties modelled with fuzzy logic. The procedure relies on output uncertainties propagation through an inverse model. Design parameter tolerance is then synthesized. The results are validated injecting designed parameters in the direct model. The methodology is illustrated on a linear model with specifications including combined uncertainties

    Discrete IDA-PBC control law for Newtonian mechanical port-Hamiltonian systems

    Get PDF
    This paper deals with the stability of discrete closed-loop dynamics arising from digital IDA-PBC controller design. This work concerns the class of Newtonian mechanical port-Hamiltonian systems (PHSs), that is those having separable energy being quadrating in momentum (with constant mass matrix). We first introduce a discretization scheme which ensures a passivity equation relatively to the same storage and dissipation functions as the continuous-time PHS. A discrete controller is then obtained following the IDA-PBC design procedure applied to the discrete PHS system. This method guarantees that, from an energetic viewpoint, the discrete closed-loop behavior is similar to the continuous one. Under zero-state observability assumption, closed-loop stability then follows from LaSalle principle. The method is illustrated on an inertia wheel pendulum model

    An Energy-Based Approach for n-dof Passive Dual-user Haptic Training Systems

    Get PDF
    International audienceThis paper introduces a dual-user training system whose design is based on an energetic approach. This kind of system is useful for supervised hands-on training where a trainer interacts with a trainee through two haptic devices, in order to practice on a manual task performed on a virtual or teleoperated robot (for example for an MIS task in a surgical context). This paper details the proof of stability of an Energy Shared Control (ESC) architecture we previously introduced for one degree of freedom (d.o.f.) devices. An extension to multiple degrees of freedom is proposed, along with an enhanced version of the Adaptive Authority Adjustment (AAA) function. Experiments are carried out with 3 d.o.f. haptic devices in free motion as well as in contact contexts in order to show the relevance of this architecture

    Discrete IDA-PBC Design for 2D Port-Hamiltonian Systems

    No full text
    International audienceWe address the discrete-time passivity-based control laws synthesis within port-Hamiltonian framework. We focus on IDA-PBC design for canonical port-Hamiltonian systems with separable energy being quadratic in momentum. For this class of systems, we define a discrete Hamiltonian dynamics that exactly satisfies a discrete energy balance. We then derive a discrete controller following the IDA-PBC procedure. The proposed methodology relies on an energy discretization scheme with suitable discrete conjugate port variables. The main result is illustrated on two examples: a nonlinear pendulum in order to compare with some simulation results of the literature, and the impact oscillator which requires robust discretization scheme
    corecore