471 research outputs found
An analysis of interplanetary solar radio emissions associated with a coronal mass ejection
Coronal mass ejections (CMEs) are large-scale eruptions of magnetized plasma
that may cause severe geomagnetic storms if Earth-directed. Here we report a
rare instance with comprehensive in situ and remote sensing observa- tions of a
CME combining white-light, radio, and plasma measurements from four different
vantage points. For the first time, we have successfully applied a radio
direction-finding technique to an interplanetary type II burst detected by two
identical widely separated radio receivers. The derived locations of the type
II and type III bursts are in general agreement with the white light CME recon-
struction. We find that the radio emission arises from the flanks of the CME,
and are most likely associated with the CME-driven shock. Our work demon-
strates the complementarity between radio triangulation and 3D reconstruction
techniques for space weather applications
Policy approaches for enhanced dairy sector innovation – A review of future pathways and policies for effective implementation of digital agriculture
Innovation and technology are a feature of New Zealand’s dairy sector. To overcome current challenges, dairy farmers require agile and multi-dimensional innovation, supported by forward-looking and integrated policy from both the sector and government. In this paper, we outline some of the current dairy sector challenges, and potential technologies to address these challenges. We focus on the future for digital agriculture innovation and discuss policy approaches to enable the sector to leverage digitalisation. These approaches include co-innovation, responsible innovation, multi-scale approaches, micro-innovation and poly-innovation and mission-oriented innovation. Digital agriculture and policy may interact in two ways: (1) policy may be used to enhance digital agriculture innovation and, (2) digitalisation itself may act to enhance agricultural policy design and delivery. Overall, innovation policy requires greater directionality, use of policy bundles and a focus on technology as a mediator of new dairy farming practices and institutional configurations
Comparison of three-dimensional analysis and stereological techniques for quantifying lithium-ion battery electrode microstructures
Lithium-ion battery performance is intrinsically linked to electrode microstructure. Quantitative measurement of key structural parameters of lithium-ion battery electrode microstructures will enable optimization as well as motivate systematic numerical studies for the improvement of battery performance. With the rapid development of 3-D imaging techniques, quantitative assessment of 3-D microstructures from 2-D image sections by stereological methods appears outmoded; however, in spite of the proliferation of tomographic imaging techniques, it remains significantly easier to obtain two-dimensional (2-D) data sets. In this study, stereological prediction and three-dimensional (3-D) analysis techniques for quantitative assessment of key geometric parameters for characterizing battery electrode microstructures are examined and compared. Lithium-ion battery electrodes were imaged using synchrotron-based X-ray tomographic microscopy. For each electrode sample investigated, stereological analysis was performed on reconstructed 2-D image sections generated from tomographic imaging, whereas direct 3-D analysis was performed on reconstructed image volumes. The analysis showed that geometric parameter estimation using 2-D image sections is bound to be associated with ambiguity and that volume-based 3-D characterization of nonconvex, irregular and interconnected particles can be used to more accurately quantify spatially-dependent parameters, such as tortuosity and pore-phase connectivity
Cassini in situ observations of long duration magnetic reconnection in Saturn’s magnetotail
Magnetic reconnection is a fundamental process in solar system and astrophysical plasmas, through which stored magnetic energy associated with current sheets is converted into thermal, kinetic and wave energy1, 2, 3, 4. Magnetic reconnection is also thought to be a key process involved in shedding internally produced plasma from the giant magnetospheres at Jupiter and Saturn through topological reconfiguration of the magnetic field5, 6. The region where magnetic fields reconnect is known as the diffusion region and in this letter we report on the first encounter of the Cassini spacecraft with a diffusion region in Saturn’s magnetotail. The data also show evidence of magnetic reconnection over a period of 19?h revealing that reconnection can, in fact, act for prolonged intervals in a rapidly rotating magnetosphere. We show that reconnection can be a significant pathway for internal plasma loss at Saturn6. This counters the view of reconnection as a transient method of internal plasma loss at Saturn5, 7. These results, although directly relating to the magnetosphere of Saturn, have applications in the understanding of other rapidly rotating magnetospheres, including that of Jupiter and other astrophysical bodies
Diffusion of e-health innovations in 'post-conflict' settings: a qualitative study on the personal experiences of health workers.
BACKGROUND: Technological innovations have the potential to strengthen human resources for health and improve access and quality of care in challenging 'post-conflict' contexts. However, analyses on the adoption of technology for health (that is, 'e-health') and whether and how e-health can strengthen a health workforce in these settings have been limited so far. This study explores the personal experiences of health workers using e-health innovations in selected post-conflict situations. METHODS: This study had a cross-sectional qualitative design. Telephone interviews were conducted with 12 health workers, from a variety of cadres and stages in their careers, from four post-conflict settings (Liberia, West Bank and Gaza, Sierra Leone and Somaliland) in 2012. Everett Roger's diffusion of innovation-decision model (that is, knowledge, persuasion, decision, implementation, contemplation) guided the thematic analysis. RESULTS: All health workers interviewed held positive perceptions of e-health, related to their beliefs that e-health can help them to access information and communicate with other health workers. However, understanding of the scope of e-health was generally limited, and often based on innovations that health workers have been introduced through by their international partners. Health workers reported a range of engagement with e-health innovations, mostly for communication (for example, email) and educational purposes (for example, online learning platforms). Poor, unreliable and unaffordable Internet was a commonly mentioned barrier to e-health use. Scaling-up existing e-health partnerships and innovations were suggested starting points to increase e-health innovation dissemination. CONCLUSIONS: Results from this study showed ICT based e-health innovations can relieve information and communication needs of health workers in post-conflict settings. However, more efforts and investments, preferably driven by healthcare workers within the post-conflict context, are needed to make e-health more widespread and sustainable. Increased awareness is necessary among health professionals, even among current e-health users, and physical and financial access barriers need to be addressed. Future e-health initiatives are likely to increase their impact if based on perceived health information needs of intended users
Neural correlates of enhanced visual short-term memory for angry faces: An fMRI study
Copyright: © 2008 Jackson et al.Background: Fluid and effective social communication requires that both face identity and emotional expression information are encoded and maintained in visual short-term memory (VSTM) to enable a coherent, ongoing picture of the world and its players. This appears to be of particular evolutionary importance when confronted with potentially threatening displays of emotion - previous research has shown better VSTM for angry versus happy or neutral face identities.Methodology/Principal Findings: Using functional magnetic resonance imaging, here we investigated the neural correlates of this angry face benefit in VSTM. Participants were shown between one and four to-be-remembered angry, happy, or neutral faces, and after a short retention delay they stated whether a single probe face had been present or not in the previous display. All faces in any one display expressed the same emotion, and the task required memory for face identity. We find enhanced VSTM for angry face identities and describe the right hemisphere brain network underpinning this effect, which involves the globus pallidus, superior temporal sulcus, and frontal lobe. Increased activity in the globus pallidus was significantly correlated with the angry benefit in VSTM. Areas modulated by emotion were distinct from those modulated by memory load.Conclusions/Significance: Our results provide evidence for a key role of the basal ganglia as an interface between emotion and cognition, supported by a frontal, temporal, and occipital network.The authors were supported by a Wellcome Trust grant (grant number 077185/Z/05/Z) and by BBSRC (UK) grant BBS/B/16178
Galileons as Wess-Zumino Terms
We show that the galileons can be thought of as Wess-Zumino terms for the
spontaneous breaking of space-time symmetries. Wess-Zumino terms are terms
which are not captured by the coset construction for phenomenological
Lagrangians with broken symmetries. Rather they are, in d space-time
dimensions, d-form potentials for (d+1)-forms which are non-trivial co-cycles
in Lie algebra cohomology of the full symmetry group relative to the unbroken
symmetry group. We introduce the galileon algebras and construct the
non-trivial (d+1)-form co-cycles, showing that the presence of galileons and
multi-galileons in all dimensions is counted by the dimensions of particular
Lie algebra cohomology groups. We also discuss the DBI and conformal galileons
from this point of view, showing that they are not Wess-Zumino terms, with one
exception in each case.Comment: 49 pages. v2 minor changes, version appearing in JHE
AXIOM: advanced X-ray imaging of the magnetosphere
Planetary plasma and magnetic field environments can be studied in two complementary ways—by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth’s magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth’s magnetosphere. In this article we describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth’s magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose ‘AXIOM: Advanced X-ray Imaging of the Magnetosphere’, a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth–Moon L1 point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterise the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and direction of the solar wind magnetic field. We also show simulations that demonstrate how the proposed X-ray telescope design is capable of imaging the predicted emission from the dayside magnetosphere with the sensitivity and cadence required to achieve the science goals of the mission
AXIOM: Advanced X-Ray Imaging Of the Magnetosheath
AXIOM (Advanced X-ray Imaging Of the Magnetosphere) is a concept mission which aims to explain how the Earth's magnetosphere responds to the changing impact of the solar wind using a unique method never attempted before; performing wide-field soft X-ray imaging and spectroscopy of the magnetosheath. magnetopause and bow shock at high spatial and temporal resolution. Global imaging of these regions is possible because of the solar wind charge exchange (SWCX) process which produces elevated soft X-ray emission from the interaction of high charge-state solar wind ions with primarily neutral hydrogen in the Earth's exosphere and near-interplanetary space
High added-value compounds with antibacterial properties from Ginja Cherries by-products
Purpose: To test the antimicrobial properties of the extracts of stems and leaves of Ginja cherry plant. Both stems and leaves are waste in the production of the cherry liquor and they could be valorised by extracting valuable compounds, making the process more environmentally sustainable.
Methods: The ethanol extracts from both stems and leaves were analysed by LC-ESI/MS to determine the phenolic composition. They were tested against Gram positive and Gram negative bacteria (Bacillus subtilis, Staphylococcus aureus MSSA, Staphylococcus aureus MRSA, Pseudomonas sp., Pseudomonas aeruginosa, Flavobacterium sp., Escherichia coli, Salmonella), using the disk diffusion technique and the broth dilution technique. Results: The extracts showed good antibacterial properties towards Gram positive and Gram negative bacteria. The values of the Minimum Inhibitory Concentration (MIC) were lower for Gram positive bacteria (10–15 mg/ml) than for Gram negative ones (10–100 mg/ml). The values of Minimum Bactericidal Concentration (MBC) were between 2 and 4 times higher than the MICs. Conclusions: The waste from Ginja cherry plants can be successfully employed to extract valuable compounds such as polyphenols, with antibacterial properties.info:eu-repo/semantics/publishedVersio
- …