17 research outputs found

    A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The larvae of the greater wax moth <it>Galleria mellonella </it>are increasingly used (i) as mini-hosts to study pathogenesis and virulence factors of prominent bacterial and fungal human pathogens, (ii) as a whole-animal high throughput infection system for testing pathogen mutant libraries, and (iii) as a reliable host model to evaluate the efficacy of antibiotics against human pathogens. In order to compensate for the lack of genomic information in <it>Galleria</it>, we subjected the transcriptome of different developmental stages and immune-challenged larvae to next generation sequencing.</p> <p>Results</p> <p>We performed a <it>Galleria </it>transcriptome characterization on the Roche 454-FLX platform combined with traditional Sanger sequencing to obtain a comprehensive transcriptome. To maximize sequence diversity, we pooled RNA extracted from different developmental stages, larval tissues including hemocytes, and from immune-challenged larvae and normalized the cDNA pool. We generated a total of 789,105 pyrosequencing and 12,032 high-quality Sanger EST sequences which clustered into 18,690 contigs with an average length of 1,132 bases. Approximately 40% of the ESTs were significantly similar (<it>E </it>≤ e<sup>-03</sup>) to proteins of other insects, of which 45% have a reported function. We identified a large number of genes encoding proteins with established functions in immunity related sensing of microbial signatures and signaling, as well as effector molecules such as antimicrobial peptides and inhibitors of microbial proteinases. In addition, we found genes known as mediators of melanization or contributing to stress responses. Using the transcriptomic data, we identified hemolymph peptides and proteins induced upon immune challenge by 2D-gelelectrophoresis combined with mass spectrometric analysis.</p> <p>Conclusion</p> <p>Here, we have developed extensive transcriptomic resources for <it>Galleria</it>. The data obtained is rich in gene transcripts related to immunity, expanding remarkably our knowledge about immune and stress-inducible genes in <it>Galleria </it>and providing the complete sequences of genes whose primary structure have only partially been characterized using proteomic methods. The generated data provide for the first time access to the genetic architecture of immunity in this model host, allowing us to elucidate the molecular mechanisms underlying pathogen and parasite response and detailed analyses of both its immune responses against human pathogens, and its coevolution with entomopathogens.</p

    Intrapulpal temperature during preparation with the Er : YAG laser: An in vitro study

    No full text
    Objective: This investigation evaluated the variation of the intrapulpal temperature when dentine was irradiated by the Er:YAG laser. Background Data: The effect of preparation with the Er:YAG laser on the intrapulpal temperature is probably the biggest problem in using the laser for preparation of dental hard tissue. Materials and Methods: Seventy-two bovine incisors were studied that had the enamel and dentine of the buccal surface polished to a thickness of 2.0 mm. The teeth were divided into three groups, according to the repetition rate used (Group I = 2 Hz, Group II = 4 Hz, and Group III = 6 Hz), and irradiated, with or without water cooling, using 250, 300, and 350 mJ of energy per pulse. Thermocouples were introduced inside the pulp chamber through the palatine opening of the samples and fixed to the vestibular wall of the pulp chamber using a thermal paste. Results: It was verified that there was a decrease of the intrapulpal temperature for all of the parameters in the Group I irradiated with water cooling and for the parameters of 350 mJ/4 Hz with water cooling. The other irradiations showed an increase of the intrapulpal temperature, varying from 0.03 degrees to 2.5 degrees C. Conclusion: We conclude that the use of the Er:YAG laser promoted acceptable temperature increases inside the pulp chamber. However, we do not recommend this procedure without water cooling because macroscopic observations of the dentine irradiated without water cooling showed dark lesions, suggesting carbonization of this tissue.o TEXTO COMPLETO DESTE ARTIGO, ESTARÁ DISPONÍVEL À PARTIR DE AGOSTO DE 2015.23218218
    corecore