159 research outputs found

    Physicochemical analysis of rotavirus segment 11 supports a 'modified panhandle' structure and not the predicted alternative tRNA-like structure (TRLS)

    Get PDF
    .Rotaviruses are a major cause of acute gastroenteritis, which is often fatal in infants. The viral genome consists of 11 double-stranded RNA segments, but little is known about their cis-acting sequences and structural elements. Covariation studies and phylogenetic analysis exploring the potential structure of RNA11 of rotaviruses suggested that, besides the previously predicted "modified panhandle" structure, the 5' and 3' termini of one of the isoforms of the bovine rotavirus UKtc strain may interact to form a tRNA-like structure (TRLS). Such TRLSs have been identified in RNAs of plant viruses, where they are important for enhancing replication and packaging. However, using tRNA mimicry assays (in vitro aminoacylation and 3'- adenylation), we found no biochemical evidence for tRNA-like functions of RNA11. Capping, synthetic 3' adenylation and manipulation of divalent cation concentrations did not change this finding. NMR studies on a 5'- and 3'-deletion construct of RNA11 containing the putative intra-strand complementary sequences supported a predominant panhandle structure and did not conform to a cloverleaf fold despite the strong evidence for a predicted structure in this conserved region of the viral RNA. Additional viral or cellular factors may be needed to stabilise it into a form with tRNA-like properties

    Analysis of IL2/IL21 Gene Variants in Cholestatic Liver Diseases Reveals an Association with Primary Sclerosing Cholangitis

    Get PDF
    Background/Aims: The chromosome 4q27 region harboring IL2 and IL21 is an established risk locus for ulcerative colitis (UC) and various other autoimmune diseases. Considering the strong coincidence of primary sclerosing cholangitis (PSC) with UC and the increased frequency of other autoimmune disorders in patients with primary biliary cirrhosis (PBC), we investigated whether genetic variation in the IL2/IL21 region may also modulate the susceptibility to these two rare cholestatic liver diseases. Methods: Four strongly UC-associated single nucleotide polymorphisms (SNPs) within the KIAA1109/TENR/IL2/IL21 linkage disequilibrium block were genotyped in 124 PBC and 41 PSC patients. Control allele frequencies from 1,487 healthy, unrelated Caucasians were available from a previous UC association study. Results: The minor alleles of all four markers were associated with a decreased susceptibility to PSC (rs13151961: p = 0.013, odds ratio (OR) 0.34; rs13119723: p = 0.023, OR 0.40; rs6822844: p = 0.031, OR 0.41; rs6840978: p = 0.043, OR 0.46). Moreover, a haplotype consisting of the four minor alleles also had a protective effect on PSC susceptibility (p = 0.0084, OR 0.28). A haplotype of the four major alleles was independently associated with PSC when excluding the patients with concomitant inflammatory bowel disease (p = 0.033, OR 4.18). Conclusion: The IL2/IL21 region may be one of the highly suggestive but so far rarely identified shared susceptibility loci for PSC and UC. Copyright (C) 2011 S. Karger AG, Base

    Assessing constancy of substitution rates in viruses over evolutionary time

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phylogenetic analyses reveal probable patterns of divergence of present day organisms from common ancestors. The points of divergence of lineages can be dated if a corresponding historical or fossil record exists. For many species, in particular viruses, such records are rare. Recently, Bayesian phylogenetic analysis using sequences from closely related organisms isolated at different times have been used to calibrate divergences. Phylogenetic analyses depend on the assumption that the average substitution rates that can be calculated from the data apply throughout the course of evolution. </p> <p>Results</p> <p>The present study tests this crucial assumption by charting the kinds of substitutions observed between pairs of sequences with different levels of total substitutions. Datasets of aligned sequences, both viral and non-viral, were assembled. For each pair of sequences in an aligned set, the distribution of nucleotide interchanges and the total number of changes were calculated. Data were binned according to total numbers of changes and plotted. The accumulation of the six possible interchange types in retroelements as a function of distance followed closely the expected hyperbolic relationship. For other datasets, however, significant deviations from this relationship were noted. A rapid initial accumulation of transition interchanges was frequent among the datasets and anomalous changes occurred at specific divergence levels. </p> <p>Conclusions</p> <p>The accumulation profiles suggested that substantial changes in frequencies of types of substitutions occur over the course of evolution and that such changes should be considered in evaluating and dating viral phylogenies.</p

    X-Ray Spectroscopy of Stars

    Full text link
    (abridged) Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma. Coronal structure, its thermal stratification and geometric extent can be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and put constraints on their most peculiar feature: the stellar wind. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and Chandra. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures (partly multiple); some corrections made after proof stag

    hMMS2 serves a redundant role in human PCNA polyubiquitination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In yeast, DNA damage leads to the mono and polyubiquitination of the sliding clamp PCNA. Monoubiquitination of PCNA is controlled by RAD18 (E3 ligase) and RAD6 (E2 conjugating enzyme), while the extension of the monoubiquitinated PCNA into a polyubiquitinated substrate is governed by RAD5, and the heterodimer of UBC13/MMS2. Each modification directs a different branch of the DNA damage tolerance pathway (DDT). While PCNA monoubiquitination leads to error-prone bypass via TLS, biochemical studies have identified MMS2 along with its heteromeric partner UBC13 to govern the error-free repair of DNA lesions by catalyzing the formation of lysine 63-linked polyubiquitin chains (K63-polyUb). Recently, it was shown that PCNA polyubiquitination is conserved in human cells and that this modification is dependent on RAD18, UBC13 and SHPRH. However, the role of hMMS2 in this process was not specifically addressed.</p> <p>Results</p> <p>In this report we show that mammalian cells in which MMS2 was reduced by siRNA-mediated knockdown maintains PCNA polyubiquitination while a knockdown of RAD18 or UBC13 abrogates PCNA ubiquitination. Moreover, the additional knockdown of a UEV1A (MMS2 homolog) does not deplete PCNA polyubiquitination. Finally, mouse embryonic stem cells null for MMS2 with or without the additional depletion of mUEV1A continue to polyubiquitinated PCNA with normal kinetics.</p> <p>Conclusion</p> <p>Our results point to a high level of redundancy in the DDT pathway and suggest the existence of another hMMS2 variant (hMMSv) or complex that can compensate for its loss.</p

    Crohn's Disease and Early Exposure to Domestic Refrigeration

    Get PDF
    Environmental risk factors playing a causative role in Crohn's Disease (CD) remain largely unknown. Recently, it has been suggested that refrigerated food could be involved in disease development. We thus conducted a pilot case control study to explore the association of CD with the exposure to domestic refrigeration in childhood.Using a standard questionnaire we interviewed 199 CD cases and 207 age-matched patients with irritable bowel syndrome (IBS) as controls. Cases and controls were followed by the same gastroenterologists of tertiary referral clinics in Tehran, Iran. The questionnaire focused on the date of the first acquisition of home refrigerator and freezer. Data were analysed by a multivariate logistic model. The current age was in average 34 years in CD cases and the percentage of females in the case and control groups were respectively 48.3% and 63.7%. Patients were exposed earlier than controls to the refrigerator (X2 = 9.9, df = 3, P = 0.04) and refrigerator exposure at birth was found to be a risk factor for CD (OR = 2.08 (95% CI: 1.01-4.29), P = 0.05). Comparable results were obtained looking for the exposure to freezer at home. Finally, among the other recorded items reflecting the hygiene and comfort at home, we also found personal television, car and washing machine associated with CD.This study supports the opinion that CD is associated with exposure to domestic refrigeration, among other household factors, during childhood

    The GimA Locus of Extraintestinal Pathogenic E. coli: Does Reductive Evolution Correlate with Habitat and Pathotype?

    Get PDF
    IbeA (invasion of brain endothelium), which is located on a genomic island termed GimA, is involved in the pathogenesis of several extraintestinal pathogenic E. coli (ExPEC) pathotypes, including newborn meningitic E. coli (NMEC) and avian pathogenic E. coli (APEC). To unravel the phylogeny of GimA and to investigate its island character, the putative insertion locus of GimA was determined via Long Range PCR and DNA-DNA hybridization in 410 E. coli isolates, including APEC, NMEC, uropathogenic (UPEC), septicemia-associated E. coli (SEPEC), and human and animal fecal isolates as well as in 72 strains of the E. coli reference (ECOR) collection. In addition to a complete GimA (∼20.3 kb) and a locus lacking GimA we found a third pattern containing a 342 bp remnant of GimA in this strain collection. The presence of GimA was almost exclusively detected in strains belonging to phylogenetic group B2. In addition, the complete GimA was significantly more frequent in APEC and NMEC strains while the GimA remnant showed a higher association with UPEC strains. A detailed analysis of the ibeA sequences revealed the phylogeny of this gene to be consistent with that obtained by Multi Locus Sequence Typing of the strains. Although common criteria for genomic islands are partially fulfilled, GimA rather seems to be an ancestral part of phylogenetic group B2, and it would therefore be more appropriate to term this genomic region GimA locus instead of genomic island. The existence of two other patterns reflects a genomic rearrangement in a reductive evolution-like manner

    Ser/Thr/Tyr Protein Phosphorylation in the Archaeon Halobacterium salinarum—A Representative of the Third Domain of Life

    Get PDF
    In the quest for the origin and evolution of protein phosphorylation, the major regulatory post-translational modification in eukaryotes, the members of archaea, the “third domain of life”, play a protagonistic role. A plethora of studies have demonstrated that archaeal proteins are subject to post-translational modification by covalent phosphorylation, but little is known concerning the identities of the proteins affected, the impact on their functionality, the physiological roles of archaeal protein phosphorylation/dephosphorylation, and the protein kinases/phosphatases involved. These limited studies led to the initial hypothesis that archaea, similarly to other prokaryotes, use mainly histidine/aspartate phosphorylation, in their two-component systems representing a paradigm of prokaryotic signal transduction, while eukaryotes mostly use Ser/Thr/Tyr phosphorylation for creating highly sophisticated regulatory networks. In antithesis to the above hypothesis, several studies showed that Ser/Thr/Tyr phosphorylation is also common in the bacterial cell, and here we present the first genome-wide phosphoproteomic analysis of the model organism of archaea, Halobacterium salinarum, proving the existence/conservation of Ser/Thr/Tyr phosphorylation in the “third domain” of life, allowing a better understanding of the origin and evolution of the so-called “Nature's premier” mechanism for regulating the functional properties of proteins

    Azospirillum Genomes Reveal Transition of Bacteria from Aquatic to Terrestrial Environments

    Get PDF
    Fossil records indicate that life appeared in marine environments ∼3.5 billion years ago (Gyr) and transitioned to terrestrial ecosystems nearly 2.5 Gyr. Sequence analysis suggests that “hydrobacteria” and “terrabacteria” might have diverged as early as 3 Gyr. Bacteria of the genus Azospirillum are associated with roots of terrestrial plants; however, virtually all their close relatives are aquatic. We obtained genome sequences of two Azospirillum species and analyzed their gene origins. While most Azospirillum house-keeping genes have orthologs in its close aquatic relatives, this lineage has obtained nearly half of its genome from terrestrial organisms. The majority of genes encoding functions critical for association with plants are among horizontally transferred genes. Our results show that transition of some aquatic bacteria to terrestrial habitats occurred much later than the suggested initial divergence of hydro- and terrabacterial clades. The birth of the genus Azospirillum approximately coincided with the emergence of vascular plants on land
    corecore