2,184 research outputs found

    A Synergistic Approach for Evaluating Climate Model Output for Ecological Applications

    Get PDF
    Increasing concern about the impacts of climate change on ecosystems is prompting ecologists and ecosystem managers to seek reliable projections of physical drivers of change. The use of global climate models in ecology is growing, although drawing ecologically meaningful conclusions can be problematic. The expertise required to access and interpret output from climate and earth system models is hampering progress in utilizing them most effectively to determine the wider implications of climate change. To address this issue, we present a joint approach between climate scientists and ecologists that explores key challenges and opportunities for progress. As an exemplar, our focus is the Southern Ocean, notable for significant change with global implications, and on sea ice, given its crucial role in this dynamic ecosystem. We combined perspectives to evaluate the representation of sea ice in global climate models. With an emphasis on ecologically-relevant criteria (sea ice extent and seasonality) we selected a subset of eight models that reliably reproduce extant sea ice distributions. While the model subset shows a similar mean change to the full ensemble in sea ice extent (approximately 50% decline in winter and 30% decline in summer), there is a marked reduction in the range. This improved the precision of projected future sea ice distributions by approximately one third, and means they are more amenable to ecological interpretation. We conclude that careful multidisciplinary evaluation of climate models, in conjunction with ongoing modeling advances, should form an integral part of utilizing model output

    Spatial Variations of Phytoplankton Biomass Controlled by River Plume Dynamics Over the Lower Changjiang Estuary and Adjacent Shelf Based on High-Resolution Observations

    Get PDF
    Phytoplankton biomass in estuarine and continental shelf regions are regulated and modified by physical processes, but these interactions have mostly been investigated at a scale of tens of kilometers, and the role of meso- to sub-mesoscale dynamical processes of freshwater plumes in regulating the spatial and temporal variations of algal biomass is largely unknown. To assess the importance of features at these scales, high-resolution (horizontal spacing \u3c 1 km) cross-sectional profiles of hydrographic and biogeochemical variables were collected in the lower Changjiang Estuary and adjacent continental shelf with a towed, undulating vehicle equipped with sensors measuring fluorescence, turbidity and irradiance. Discrete stations were also occupied to allow for the characterization of nutrients. Multiple physical features at different scales regulated the spatial variation of phytoplankton biomass. Phytoplankton biomass was initialized by an improved irradiance field driven by reduced turbidity together with a rapid development of subsurface stratification at the main plume front (isohaline of 23) downstream from the turbidity maximum zone. Phytoplankton blooms did not occur until outcrops located within the main front that were characterized by surface convergence and downwelling, which contributed to large algal biomass by mass trapping and enhanced light penetration. Wave-like features were detected seaward of the main front, coinciding with deacceleration of currents, indicating that they are front-released internal waves that increase algal retention time. This study revealed the critical role of small-scale processes near the plume front in triggering phytoplankton blooms under the large-scale context of improved light conditions, coastal upwelling and nutrient additions from intruding oceanic waters

    Diatom Hotspots Driven by Western Boundary Current Instability

    Get PDF
    Climatic changes have decreased the stability of the Gulf Stream (GS), increasing the frequency at which its meanders interact with the Mid-Atlantic Bight (MAB) continental shelf and slope region. These intrusions are thought to suppress biological productivity by transporting low-nutrient water to the otherwise productive shelf edge region. Here we present evidence of widespread, anomalously intense subsurface diatom hotspots in the MAB slope sea that likely resulted from a GS intrusion in July 2019. The hotspots (at ∼50 m) were associated with water mass properties characteristic of GS water (∼100 m); it is probable that the hotspots resulted from the upwelling of GS water during its transport into the slope sea, likely by a GS meander directly intruding onto the continental slope east of where the hotspots were observed. Further work is required to unravel how increasingly frequent direct GS intrusions could influence MAB marine ecosystems

    International Society of Sports Nutrition position stand: beta-alanine

    Get PDF
    Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of beta-alanine supplementation. Based on the current available literature, the conclusions of the ISSN are as follows: 1) Four weeks of beta-alanine supplementation (4–6 g daily) significantly augments muscle carnosine concentrations, thereby acting as an intracellular pH buffer; 2) Beta-alanine supplementation currently appears to be safe in healthy populations at recommended doses; 3) The only reported side effect is paraesthesia (tingling), but studies indicate this can be attenuated by using divided lower doses (1.6 g) or using a sustained-release formula; 4) Daily supplementation with 4 to 6 g of beta-alanine for at least 2 to 4 weeks has been shown to improve exercise performance, with more pronounced effects in open end-point tasks/time trials lasting 1 to 4 min in duration; 5) Beta-alanine attenuates neuromuscular fatigue, particularly in older subjects, and preliminary evidence indicates that beta-alanine may improve tactical performance; 6) Combining beta-alanine with other single or multi-ingredient supplements may be advantageous when supplementation of beta-alanine is high enough (4–6 g daily) and long enough (minimum 4 weeks); 7) More research is needed to determine the effects of beta-alanine on strength, endurance performance beyond 25 min in duration, and other health-related benefits associated with carnosine

    Synergistic effects of iron and temperature on Antarctic phytoplankton and microzooplankton assemblages

    Get PDF
    Iron availability and temperature are important limiting factors for the biota in many areas of the world ocean, and both have been predicted to change in future climate scenarios. However, the impacts of combined changes in these two key factors on microbial trophic dynamics and nutrient cycling are unknown. We examined the relative effects of iron addition (+1 nM) and increased temperature (+4 degrees C) on plankton assemblages of the Ross Sea, Antarctica, a region characterized by annual algal blooms and an active microbial community. Increased iron and temperature individually had consistently significant but relatively minor positive effects on total phytoplankton abundance, phytoplankton and microzooplankton community composition, as well as photosynthetic parameters and nutrient drawdown. Unexpectedly, increased iron had a consistently negative impact on microzooplankton abundance, most likely a secondary response to changes in phytoplankton community composition. When iron and temperature were increased in concert, the resulting interactive effects were greatly magnified. This synergy between iron and temperature increases would not have been predictable by examining the effects of each variable individually. Our results suggest the possibility that if iron availability increases under future climate regimes, the impacts of predicted temperature increases on plankton assemblages in polar regions could be significantly enhanced. Such synergistic and antagonistic interactions between individual climate change variables highlight the importance of multivariate studies for marine global change experiments

    SeaWiFS satellite ocean color data from the Southern Ocean

    Get PDF
    SeaWiFS estimates of surface chlorophyll concentrations are reported for the region of the U.S. JGOFS study in the Southern Ocean (similar to 170 degrees W, 60 degrees S). Elevated chlorophyll was observed at the Southern Ocean fronts, near the edge of the seasonal ice sheet, and above the Pacific-Antarctic Ridge. The elevated chlorophyll levels associated with the Pacific-Antarctic Ridge are surprising since even the crest of the ridge is at depths \u3e 2000 m. This elevated phytoplankton biomass is likely the result of mesoscale physical-biological interactions where the Antarctic Circumpolar Current (ACC) encounters the ridge. Four cruises surveyed this region between October 1997 and March 1998, as part of the U.S. JGOFS. Satellite-derived chlorophyll concentrations were compared with in situ extracted chlorophyll measurements from these cruises. There was good agreement (r(2) of 0.72, from a linear regression of shipboard vs, satellite chlorophyll), although SeaWiFS underestimated chlorophyll concentrations relative to the ship data

    Hydrography, nutrients, and carbon pools in the Pacific sector of the Southern Ocean: Implications for carbon flux

    Get PDF
    PDF Tools Share Abstract We investigated the hydrography, nutrients, and dissolved and particulate carbon pools in the western Pacific sector of the Antarctic Circumpolar Current (ACC) during austral summer 1996 to assess the region\u27s role in the carbon cycle. Low f CO2 values along two transects indicated that much of the study area was a sink for atmospheric CO2. The f CO2 values were lowest near the Polar Front (PF) and the Subtropical Front (STF), concomitant with maxima of chlorophyll a and particulate and dissolved organic carbon. The largest biomass accumulations did not occur at fronts, which had high surface geostrophic velocities (20–51 cm sβˆ’1), but in relatively low velocity regions near fronts or in an eddy. Thus vertical motion and horizontal advection associated with fronts may have replenished nutrients in surface waters but also dispersed phytoplankton. Although surface waters north of the PF have been characterized as a β€œhigh nutrient‐low chlorophyll” region, low silicic acid (Si) concentrations (2–4 ΞΌM ) may limit production of large diatoms and therefore the potential carbon flux. Low concentrations (4–10 ΞΌM Si) at depths of winter mixing constrain the level of Si replenishment to surface waters. It has been suggested that an increase in aeolian iron north of the PF may increase primary productivity and carbon export. Our results, however, indicate that while diatom growth and carbon export may be enhanced, the extent ultimately would be limited by the vertical supply of Si. South of the PF, the primary mechanism by which carbon is exported to deep water appears to be through diatom flux. We suggest that north of the PF, particulate and dissolved carbon may be exported primarily to intermediate depths through subduction and diapycnal mixing associated with Subantarctic Mode Water and Antarctic Intermediate Water formation. These physical‐biological interactions and Si dynamics should be included in future biogeochemical models to provide a more accurate prediction of carbon flux

    A database of ocean primary productivity from the 14C method

    Get PDF
    The database on ocean primary productivity comprises over two decades (1985–2008) of data that the authors have participated in collecting, using the assimilation of inorganic 14C through photosynthesis, in incubations carried out in situ. The dataset is perhaps unique in that it uses, overwhelmingly, consistent methodology while covering a wide geographic range. Ancillary data are included. Using the database, it is hoped that investigators can test for the relationships among the environmental drivers for ocean productivity, the meaning of the 14C method in terms of phytoplankton physiology and the dynamics in the water column, and as a resource for further development of productivity algorithms using satellite ocean color imagery

    Temporal progression of photosynthetic-strategy in phytoplankton in the Ross Sea, Antarctica

    Get PDF
    The bioavailability of iron influences the distribution, biomass and pioductivity of phytoplankton in the Ross Sea, one of the most productive regions in the Southern Ocean. We mapped the spatial and temporal extent and severity of iron-limitation of the native phytoplankton assemblage using long- (\u3e24 h) and short-term (24 h) iron-addition experiments along with physiological and molecular characterisations during a cruise to the Ross Sea in December February 2012. Phytoplankton increased their photosynthetic efficiency in response to iron addition, suggesting proximal iron limitation throughout most of the Ross Sea during summer. Molecular and physiological data further indicate that as nitrate is removed from the surface ocean the phytoplankton community transitions to one displaying an iron-efficient photosynthetic strategy characterised by an increase in the size of photosystem II (PSII) photochemical cross section (sigma(rpsII)) and a decrease in the chlorophyll-normalised PSII abundance. These results suggest that phytoplankton with the ability to reduce their photosynthetic iron requirements are selected as the growing season progresses, which may drive the well-documented progression from Phaeocystis antarctica- assemblages to diatom-dominated phytoplanlcton. Such a shift in the assemblage-level photosynthetic strategy potentially mediates further drawdown of nitrate following the development of iron deficient conditions in the Ross Sea

    Surface chlorophyll anomalies induced by mesoscale eddy-wind interactions in the northern Norwegian Sea

    Get PDF
    The substantial productivity of the northern Norwegian Sea is closely related to its strong mesoscale eddy activity, but how eddies affect phytoplankton biomass levels in the upper ocean through horizontal and vertical transport-mixing has not been well quantified. To assess mesoscale eddy induced ocean surface chlorophyll-a concentration (CHL) anomalies and modulation of eddy-wind interactions in the region, we constructed composite averaged CHL and wind anomalies from 3,841 snapshots of anticyclonic eddies (ACEs) and 2,727 snapshots of cyclonic eddies (CEs) over the period 2000-2020 using satellite altimetry, scatterometry, and ocean color products. Results indicate that eddy pumping induces negative (positive) CHL anomalies within ACEs (CEs), while Ekman pumping caused by wind-eddy interactions induces positive (negative) CHL anomalies within ACEs (CEs). Eddy-induced Ekman upwelling plays a key role in the unusual positive CHL anomalies within the ACEs and results in the vertical transport of nutrients that stimulates phytoplankton growth and elevated productivity of the region. Seasonal shoaling of the mixed layer depth (MLD) results in greater irradiance levels available for phytoplankton growth, thereby promoting spring blooms, which in combination with strong eddy activity leads to large CHL anomalies in May and June. The combined processes of wind-eddy interactions and seasonal shallowing of MLD play a key role in generating surface CHL anomalies and is a major factor in the regulation of phytoplankton biomass in the northern Norwegian Sea
    • …
    corecore