358 research outputs found

    Neuropsychological patterns following lesions of the anterior insula in a series of forty neurosurgical patients

    Get PDF
    In the present study we investigated the effects of lesions affecting mainly the anterior insula in a series of 22 patients with lesions in the left hemisphere (LH), and 18 patients with lesions involving the right hemisphere (RH). The site of the lesion was established by performing an overlap of the probabilistic cytoarchitectonic maps of the posterior insula. Here we report the patients\u2019 neuropsychological profile and an analysis of their pre-surgical symptoms. We found that pre-operatory symptoms significantly differed in patients depending on whether the lesion affected the right or left insula and a strict parallelism between the patterns emerged in the pre-surgery symptoms analysis, and the patients\u2019 cognitive profile. In particular, we found that LH patients showed cognitive deficits. By contrast, the RH patients, with the exception of one case showing an impaired performance at the visuo-spatial planning test were within the normal range in performing all the tests. In addition, a sub-group of patients underwent to the post-surgery follow-up examination

    Global parameter identification of stochastic reaction networks from single trajectories

    Full text link
    We consider the problem of inferring the unknown parameters of a stochastic biochemical network model from a single measured time-course of the concentration of some of the involved species. Such measurements are available, e.g., from live-cell fluorescence microscopy in image-based systems biology. In addition, fluctuation time-courses from, e.g., fluorescence correlation spectroscopy provide additional information about the system dynamics that can be used to more robustly infer parameters than when considering only mean concentrations. Estimating model parameters from a single experimental trajectory enables single-cell measurements and quantification of cell--cell variability. We propose a novel combination of an adaptive Monte Carlo sampler, called Gaussian Adaptation, and efficient exact stochastic simulation algorithms that allows parameter identification from single stochastic trajectories. We benchmark the proposed method on a linear and a non-linear reaction network at steady state and during transient phases. In addition, we demonstrate that the present method also provides an ellipsoidal volume estimate of the viable part of parameter space and is able to estimate the physical volume of the compartment in which the observed reactions take place.Comment: Article in print as a book chapter in Springer's "Advances in Systems Biology

    Gustatory Imagery Reveals Functional Connectivity from the Prefrontal to Insular Cortices Traced with Magnetoencephalography

    Get PDF
    Our experience and prejudice concerning food play an important role in modulating gustatory information processing; gustatory memory stored in the central nervous system influences gustatory information arising from the peripheral nervous system. We have elucidated the mechanism of the 'top-down" modulation of taste perception in humans using functional magnetic resonance imaging (fMRI) and demonstrated that gustatory imagery is mediated by the prefrontal (PFC) and insular cortices (IC). However, the temporal order of activation of these brain regions during gustatory imagery is still an open issue. To explore the source of "top-down" signals during gustatory imagery tasks, we analyzed the temporal activation patterns of activated regions in the cerebral cortex using another non-invasive brain imaging technique, magnetoencephalography (MEG). Gustatory imagery tasks were presented by words (Letter G-V) or pictures (Picture G-V) of foods/beverages, and participants were requested to recall their taste. In the Letter G-V session, 7/9 (77.8%) participants showed activation in the IC with a latency of 401.7 +/- 34.7 ms (n = 7) from the onset of word exhibition. In 5/7 (71.4%) participants who exhibited IC activation, the PFC was activated prior to the IC at a latency of 315.2 +/- 56.5 ms (n = 5), which was significantly shorter than the latency to the IC activation. In the Picture G-V session, the IC was activated in 6/9 (66.7%) participants, and only 1/9 (11.1%) participants showed activation in the PFC. There was no significant dominance between the right and left IC or PFC during gustatory imagery. These results support those from our previous fMRI study in that the Letter G-V session rather than the Picture G-V session effectively activates the PFC and IC and strengthen the hypothesis that the PFC mediates "top-down" control of retrieving gustatory information from the storage of long-term memories and in turn activates the IC

    The Effect of Variation in the Effective Population Size on the Rate of Adaptive Molecular Evolution in Eukaryotes

    Get PDF
    The role of adaptation is a fundamental question in molecular evolution. Theory predicts that species with large effective population sizes should undergo a higher rate of adaptive evolution than species with low effective population sizes if adaptation is limited by the supply of mutations. Previous analyses have appeared to support this conjecture because estimates of the proportion of nonsynonymous substitutions fixed by adaptive evolution, α, tend to be higher in species with large N(e). However, α is a function of both the number of advantageous and effectively neutral substitutions, either of which might depend on N(e). Here, we investigate the relationship between N(e) and ω(a), the rate of adaptive evolution relative to the rate of neutral evolution, using nucleotide polymorphism and divergence data from 13 independent pairs of eukaryotic species. We find a highly significant positive correlation between ω(a) and N(e). We also find some evidence that the rate of adaptive evolution varies between groups of organisms for a given N(e). The correlation between ω(a) and N(e) does not appear to be an artifact of demographic change or selection on synonymous codon use. Our results suggest that adaptation is to some extent limited by the supply of mutations and that at least some adaptation depends on newly occurring mutations rather than on standing genetic variation. Finally, we show that the proportion of nearly neutral nonadaptive substitutions declines with increasing N(e). The low rate of adaptive evolution and the high proportion of effectively neutral substitution in species with small N(e) are expected to combine to make it difficult to detect adaptive molecular evolution in species with small N(e)

    Vitamin D supplementation and breast cancer prevention : a systematic review and meta-analysis of randomized clinical trials

    Get PDF
    In recent years, the scientific evidence linking vitamin D status or supplementation to breast cancer has grown notably. To investigate the role of vitamin D supplementation on breast cancer incidence, we conducted a systematic review and meta-analysis of randomized controlled trials comparing vitamin D with placebo or no treatment. We used OVID to search MEDLINE (R), EMBASE and CENTRAL until April 2012. We screened the reference lists of included studies and used the “Related Article” feature in PubMed to identify additional articles. No language restrictions were applied. Two reviewers independently extracted data on methodological quality, participants, intervention, comparison and outcomes. Risk Ratios and 95% Confident Intervals for breast cancer were pooled using a random-effects model. Heterogeneity was assessed using the I2 test. In sensitivity analysis, we assessed the impact of vitamin D dosage and mode of administration on treatment effects. Only two randomized controlled trials fulfilled the pre-set inclusion criteria. The pooled analysis included 5372 postmenopausal women. Overall, Risk Ratios and 95% Confident Intervals were 1.11 and 0.74–1.68. We found no evidence of heterogeneity. Neither vitamin D dosage nor mode of administration significantly affected breast cancer risk. However, treatment efficacy was somewhat greater when vitamin D was administered at the highest dosage and in combination with calcium (Risk Ratio 0.58, 95% Confident Interval 0.23–1.47 and Risk Ratio 0.93, 95% Confident Interval 0.54–1.60, respectively). In conclusions, vitamin D use seems not to be associated with a reduced risk of breast cancer development in postmenopausal women. However, the available evidence is still limited and inadequate to draw firm conclusions. Study protocol code: FARM8L2B5L

    Candidate Causal Regulatory Effects by Integration of Expression QTLs with Complex Trait Genetic Associations

    Get PDF
    The recent success of genome-wide association studies (GWAS) is now followed by the challenge to determine how the reported susceptibility variants mediate complex traits and diseases. Expression quantitative trait loci (eQTLs) have been implicated in disease associations through overlaps between eQTLs and GWAS signals. However, the abundance of eQTLs and the strong correlation structure (LD) in the genome make it likely that some of these overlaps are coincidental and not driven by the same functional variants. In the present study, we propose an empirical methodology, which we call Regulatory Trait Concordance (RTC) that accounts for local LD structure and integrates eQTLs and GWAS results in order to reveal the subset of association signals that are due to cis eQTLs. We simulate genomic regions of various LD patterns with both a single or two causal variants and show that our score outperforms SNP correlation metrics, be they statistical (r2) or historical (D'). Following the observation of a significant abundance of regulatory signals among currently published GWAS loci, we apply our method with the goal to prioritize relevant genes for each of the respective complex traits. We detect several potential disease-causing regulatory effects, with a strong enrichment for immunity-related conditions, consistent with the nature of the cell line tested (LCLs). Furthermore, we present an extension of the method in trans, where interrogating the whole genome for downstream effects of the disease variant can be informative regarding its unknown primary biological effect. We conclude that integrating cellular phenotype associations with organismal complex traits will facilitate the biological interpretation of the genetic effects on these traits

    An Approximate Bayesian Estimator Suggests Strong, Recurrent Selective Sweeps in Drosophila

    Get PDF
    The recurrent fixation of newly arising, beneficial mutations in a species reduces levels of linked neutral variability. Models positing frequent weakly beneficial substitutions or, alternatively, rare, strongly selected substitutions predict similar average effects on linked neutral variability, if the product of the rate and strength of selection is held constant. We propose an approximate Bayesian (ABC) polymorphism-based estimator that can be used to distinguish between these models, and apply it to multi-locus data from Drosophila melanogaster. We investigate the extent to which inference about the strength of selection is sensitive to assumptions about the underlying distributions of the rates of substitution and recombination, the strength of selection, heterogeneity in mutation rate, as well as the population's demographic history. We show that assuming fixed values of selection parameters in estimation leads to overestimates of the strength of selection and underestimates of the rate. We estimate parameters for an African population of D. melanogaster (ŝ∼2E−03, ) and compare these to previous estimates. Finally, we show that surveying larger genomic regions is expected to lend much more discriminatory power to the approach. It will thus be of great interest to apply this method to emerging whole-genome polymorphism data sets in many taxa
    corecore