358 research outputs found

    Ocean acidification alters properties of the exoskeleton in adult Tanner crabs, Chionoecetes bairdi

    Get PDF
    Ocean acidification can affect the ability of calcifying organisms to build and maintain mineralized tissue. In decapod crustaceans, the exoskeleton is a multilayered structure composed of chitin, protein and mineral, predominately magnesian calcite or amorphous calcium carbonate (ACC). We investigated the effects of acidification on the exoskeleton of mature (post-terminal-molt) female southern Tanner crabs, Chionoecetes bairdi. Crabs were exposed to one of three pH levels – 8.1, 7.8 or 7.5 – for 2 years. Reduced pH led to a suite of body region-specific effects on the exoskeleton. Microhardness of the claw was 38% lower in crabs at pH 7.5 compared with those at pH 8.1, but carapace microhardness was unaffected by pH. In contrast, reduced pH altered elemental content in the carapace (reduced calcium, increased magnesium), but not the claw. Diminished structural integrity and thinning of the exoskeleton were observed at reduced pH in both body regions; internal erosion of the carapace was present in most crabs at pH 7.5, and the claws of these crabs showed substantial external erosion, with tooth-like denticles nearly or completely worn away. Using infrared spectroscopy, we observed a shift in the phase of calcium carbonate present in the carapace of pH 7.5 crabs: a mix of ACC and calcite was found in the carapace of crabs at pH 8.1, whereas the bulk of calcium carbonate had transformed to calcite in pH 7.5 crabs. With limited capacity for repair, the exoskeleton of long-lived crabs that undergo a terminal molt, such as C. bairdi, may be especially susceptible to ocean acidification

    Neural Correlates of Appetite and Hunger-Related Evaluative Judgments

    Get PDF
    How much we desire a meal depends on both the constituent foods and how hungry we are, though not every meal becomes more desirable with increasing hunger. The brain therefore needs to be able to integrate hunger and meal properties to compute the correct incentive value of a meal. The present study investigated the functional role of the amygdala and the orbitofrontal cortex in mediating hunger and dish attractiveness. Furthermore, it explored neural responses to dish descriptions particularly susceptible to value-increase following fasting. We instructed participants to rate how much they wanted food menu items while they were either hungry or sated, and compared the rating differences in these states. Our results point to the representation of food value in the amygdala, and to an integration of attractiveness with hunger level in the orbitofrontal cortex. Dishes particularly desirable during hunger activated the thalamus and the insula. Our results specify the functions of evaluative structures in the context of food attractiveness, and point to a complex neural representation of dish qualities which contribute to state-dependent value

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Towards a General Theory of Neural Computation Based on Prediction by Single Neurons

    Get PDF
    Although there has been tremendous progress in understanding the mechanics of the nervous system, there has not been a general theory of its computational function. Here I present a theory that relates the established biophysical properties of single generic neurons to principles of Bayesian probability theory, reinforcement learning and efficient coding. I suggest that this theory addresses the general computational problem facing the nervous system. Each neuron is proposed to mirror the function of the whole system in learning to predict aspects of the world related to future reward. According to the model, a typical neuron receives current information about the state of the world from a subset of its excitatory synaptic inputs, and prior information from its other inputs. Prior information would be contributed by synaptic inputs representing distinct regions of space, and by different types of non-synaptic, voltage-regulated channels representing distinct periods of the past. The neuron's membrane voltage is proposed to signal the difference between current and prior information (“prediction error” or “surprise”). A neuron would apply a Hebbian plasticity rule to select those excitatory inputs that are the most closely correlated with reward but are the least predictable, since unpredictable inputs provide the neuron with the most “new” information about future reward. To minimize the error in its predictions and to respond only when excitation is “new and surprising,” the neuron selects amongst its prior information sources through an anti-Hebbian rule. The unique inputs of a mature neuron would therefore result from learning about spatial and temporal patterns in its local environment, and by extension, the external world. Thus the theory describes how the structure of the mature nervous system could reflect the structure of the external world, and how the complexity and intelligence of the system might develop from a population of undifferentiated neurons, each implementing similar learning algorithms

    Prehospital critical care for out-of-hospital cardiac arrest: An observational study examining survival and a stakeholder-focused cost analysis

    Get PDF
    © 2016 The Author(s). Background: Survival rates from out-of-hospital cardiac arrest (OHCA) remain low, despite remarkable efforts to improve care. A number of ambulance services in the United Kingdom (UK) have developed prehospital critical care teams (CCTs) which attend critically ill patients, including OHCA. However, current scientific evidence describing CCTs attending OHCA is sparse and research to date has not demonstrated clear benefits from this model of care. Methods: This prospective, observational study will describe the effect of CCTs on survival from OHCA, when compared to advanced-life-support (ALS), the current standard of prehospital care in the UK. In addition, we will describe the association between individual critical care interventions and survival, and also the costs of CCTs for OHCA. To examine the effect of CCTs on survival from OHCA, we will use routine Utstein variables data already collected in a number of UK ambulance trusts. We will use propensity score matching to adjust for imbalances between the CCT and ALS groups. The primary outcome will be survival to hospital discharge, with the secondary outcome of survival to hospital admission. We will record the critical care interventions delivered during CCT attendance at OHCA. We will describe frequencies and aim to use multiple logistic regression to examine possible associations with survival. Finally, we will undertake a stakeholder-focused cost analysis of CCTs for OHCA. This will utilise a previously published Emergency Medical Services (EMS) cost analysis toolkit and will take into account the costs incurred from use of a helicopter and the proportion of these costs currently covered by charities in the UK. Discussion: Prehospital critical care for OHCA is not universally available in many EMS. In the UK, it is variable and largely funded through public donations to charities. If this study demonstrates benefit from CCTs at an acceptable cost to the public or EMS commissioners, it will provide a rationale to increase funding and service provision. If no clinical benefit is found, the public and charities providing these services can consider concentrating their efforts on other areas of prehospital care. Trial registration: ISRCTN registry ID ISRCTN18375201

    Integrated high-content quantification of intracellular ROS levels and mitochondrial morphofunction

    Get PDF
    Oxidative stress arises from an imbalance between the production of reactive oxygen species (ROS) and their removal by cellular antioxidant systems. Especially under pathological conditions, mitochondria constitute a relevant source of cellular ROS. These organelles harbor the electron transport chain, bringing electrons in close vicinity to molecular oxygen. Although a full understanding is still lacking, intracellular ROS generation and mitochondrial function are also linked to changes in mitochondrial morphology. To study the intricate relationships between the different factors that govern cellular redox balance in living cells, we have developed a high-contentmicroscopy-based strategy for simultaneous quantification of intracellular ROS levels and mitochondrial morphofunction. Here, we summarize the principles of intracellular ROS generation and removal, and we explain the major considerations for performing quantitative microscopy analyses of ROS and mitochondrial morphofunction in living cells. Next, we describe our workflow, and finally, we illustrate that a multiparametric readout enables the unambiguous classification of chemically perturbed cells as well as laminopathy patient cells

    A scoping review of digital fabrication techniques applied to prosthetics and orthotics: Part 1 of 2—Prosthetics

    Get PDF
    Background: Traditionally, the manufacture of prostheses is time-consuming and labor-intensive. One possible route to improving access and quality of these devices is the digitalizing of the fabrication process, which may reduce the burden of manual labor and bring the potential for automation that could help unblock access to assistive technologies globally. Objectives: To identify where there are gaps in the literature that are creating barriers to decision-making on either appropriate uptake by clinical teams or on the needed next steps in research that mean these technologies can continue on a pathway to maturity. Study design: Scoping literature review. Methods: A comprehensive search was completed in the following databases: Allied and Complementary Medicine Database, MEDLINE, Embase, Global Health Archive, CINAHL Plus, Cochrane Library, Web of Science, Association for Computing Machinery, Institute of Electrical and Electronics Engineers, and Engineering Village, resulting in 3487 articles to be screened. Results: After screening, 130 lower limb prosthetic articles and 117 upper limb prosthetic articles were included in this review. Multiple limitations in the literature were identified, particularly a lack of long-term, larger-scale studies; research into the training requirements for these technologies and the necessary rectification processes; and a high range of variance of production workflows and materials which makes drawing conclusions difficult. Conclusions: These limitations create a barrier to adequate evidence-based decision-making for clinicians, technology developers, and wider policymakers. Increased collaboration between academia, industry, and clinical teams across more of the pathway to market for new technologies could be a route to addressing these gaps

    GAMBIT: the global and modular beyond-the-standard-model inference tool

    Get PDF
    We describe the open-source global fitting package GAMBIT: the Global And Modular Beyond-the-Standard-Model Inference Tool. GAMBIT combines extensive calculations of observables and likelihoods in particle and astroparticle physics with a hierarchical model database, advanced tools for automatically building analyses of essentially any model, a flexible and powerful system for interfacing to external codes, a suite of different statistical methods and parameter scanning algorithms, and a host of other utilities designed to make scans faster, safer and more easily-extendible than in the past. Here we give a detailed description of the framework, its design and motivation, and the current models and other specific components presently implemented in GAMBIT. Accompanying papers deal with individual modules and present first GAMBIT results. GAMBIT can be downloaded from gambit.hepforge.org.Peter Athron, Csaba Balazs, Torsten Bringmann, Andy Buckley, Marcin Chrząszcz … Martin White … et al. (The GAMBIT Collaboration
    corecore