1,433 research outputs found

    Ultrafast changes in lattice symmetry probed by coherent phonons

    Full text link
    The electronic and structural properties of a material are strongly determined by its symmetry. Changing the symmetry via a photoinduced phase transition offers new ways to manipulate material properties on ultrafast timescales. However, in order to identify when and how fast these phase transitions occur, methods that can probe the symmetry change in the time domain are required. We show that a time-dependent change in the coherent phonon spectrum can probe a change in symmetry of the lattice potential, thus providing an all-optical probe of structural transitions. We examine the photoinduced structural phase transition in VO2 and show that, above the phase transition threshold, photoexcitation completely changes the lattice potential on an ultrafast timescale. The loss of the equilibrium-phase phonon modes occurs promptly, indicating a non-thermal pathway for the photoinduced phase transition, where a strong perturbation to the lattice potential changes its symmetry before ionic rearrangement has occurred.Comment: 14 pages 4 figure

    Multifocal invasive ductal breast cancer with osteoclast-like giant cells: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>To the best of our knowledge, this is the first case report of a multifocal (trifocal) invasive carcinoma of the breast containing osteoclast-like giant cells.</p> <p>Case presentation</p> <p>A 64-year-old Caucasian woman presented for routine mammography screening with three radiodense lesions in the lower inner quadrant of the right breast, a primary breast cancer. Microscopic examination showed three foci of invasive ductal carcinoma with multinucleated osteoclast-like giant cells. Osteoclast-like giant cells in breast cancer are a rare phenomenon. They are described in less than two percent of all breast cancers and occur in association with invasive ductal cancer and invasive lobular cancer. In addition, osteoclast-like giant cells have been described in several sarcomas and metaplastic carcinomas of the breast.</p> <p>Conclusion</p> <p>To the best of our knowledge, this is the first report of a multifocal infiltrating ductal carcinoma of the breast containing osteoclast-like giant cells. This could be an indication for a possible early event in carcinogenesis associated with a biological event or secretion that indicates the differentiation and/or migration of stromal cells or macrophages.</p

    Nicotinamide Phosphoribosyltransferase/Visfatin Does Not Catalyze Nicotinamide Mononucleotide Formation in Blood Plasma

    Get PDF
    Nicotinamide (Nam) phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in mammalian NAD synthesis, catalyzing nicotinamide mononucleotide (NMN) formation from Nam and 5-phosphoribosyl 1-pyrophosphate (PRPP). NAMPT has also been described as an adipocytokine visfatin with a variety of actions, although physiological significance of this protein remains unclear. It has been proposed that possible actions of visfatin are mediated through the extracellular formation of NMN. However, we did not detect NMN in mouse blood plasma, even with a highly specific and sensitive liquid chromatography/tandem mass spectrometry. Furthermore, there is no or little ATP, the activator of NAMPT, in extracellular spaces. We thus questioned whether visfatin catalyzes the in situ formation of NMN under such extracellular milieus. To address this question, we here determined Km values for the substrates Nam and PRPP in the NAMPT reaction without or with ATP using a recombinant human enzyme and found that 1 mM ATP dramatically decreases Km values for the substrates, in particular PRPP to its intracellular concentration. Consistent with the kinetic data, only when ATP is present at millimolar levels, NAMPT efficiently catalyzed the NMN formation at the intracellular concentrations of the substrates. Much lower concentrations of Nam and almost the absence of PRPP and ATP in the blood plasma suggest that NAMPT should not efficiently catalyze its reaction under the extracellular milieu. Indeed, NAMPT did not form NMN in the blood plasma. From these kinetic analyses of the enzyme and quantitative determination of its substrates, activator, and product, we conclude that visfatin does not participate in NMN formation under the extracellular milieus. Together with the absence of NMN in the blood plasma, our conclusion does not support the concept of “NAMPT-mediated systemic NAD biosynthesis.” Our study would advance current understanding of visfatin physiology

    Chemistry of Secondary Polyphenols Produced during Processing of Tea and Selected Foods

    Get PDF
    This review will discuss recent progress in the chemistry of secondary polyphenols produced during food processing. The production mechanism of the secondary polyphenols in black tea, whisky, cinnamon, and persimmon fruits will be introduced. In the process of black tea production, tea leaf catechins are enzymatically oxidized to yield a complex mixture of oxidation products, including theaflavins and thearubigins. Despite the importance of the beverage, most of the chemical constituents have not yet been confirmed due to the complexity of the mixture. However, the reaction mechanisms at the initial stages of catechin oxidation are explained by simple quinone–phenol coupling reactions. In vitro model experiments indicated the presence of interesting regio- and stereoselective reactions. Recent results on the reaction mechanisms will be introduced. During the aging of whisky in oak wood barrels, ellagitannins originating from oak wood are oxidized and react with ethanol to give characteristic secondary ellagitannins. The major part of the cinnamon procyanidins is polymerized by copolymerization with cinnamaldehyde. In addition, anthocyanidin structural units are generated in the polymer molecules by oxidation which accounts for the reddish coloration of the cinnamon extract. This reaction is related to the insolubilization of proanthocyanidins in persimmon fruits by condensation with acetaldehyde. In addition to oxidation, the reaction of polyphenols with aldehydes may be important in food processing

    Sphingosine 1-phosphate modulates antigen capture by murine langerhans cells via the S1P2 receptor subtype

    Get PDF
    Dendritic cells (DCs) play a pivotal role in the development of cutaneous contact hypersensitivity (CHS) and atopic dermatitis as they capture and process antigen and present it to T lymphocytes in the lymphoid organs. Recently, it has been indicated that a topical application of the sphingolipid sphingosine 1-phosphate (S1P) prevents the inflammatory response in CHS, but the molecular mechanism is not fully elucidated. Here we indicate that treatment of mice with S1P is connected with an impaired antigen uptake by Langerhans cells (LCs), the initial step of CHS. Most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. Our results indicate that S1P inhibits macropinocytosis of the murine LC line XS52 via S1P2 receptor stimulation followed by a reduced phosphatidylinositol 3-kinase (PI3K) activity. As down-regulation of S1P2 not only diminished S1P-mediated action but also enhanced the basal activity of LCs on antigen capture, an autocrine action of S1P has been assumed. Actually, S1P is continuously produced by LCs and secreted via the ATP binding cassette transporter ABCC1 to the extracellular environment. Consequently, inhibition of ABCC1, which decreased extracellular S1P levels, markedly increased the antigen uptake by LCs. Moreover, stimulation of sphingosine kinase activity, the crucial enzyme for S1P formation, is connected not only with enhanced S1P levels but also with diminished antigen capture. These results indicate that S1P is essential in LC homeostasis and influences skin immunity. This is of importance as previous reports suggested an alteration of S1P levels in atopic skin lesions

    Nonbacterial thrombotic endocarditis associated with cancer of unknown origin complicated with thrombus in the left auricular appendage: case report

    Get PDF
    A 63-year-old man was admitted to our hospital with a complaint of right lateroabdominal pain. He was diagnosed with metastatic colon cancer, and then developed multiple brain embolic infarctions 7 days after admission. Transesophageal echocardiography showed that mobile, echo-dense masses were attached to the anterior and posterior mitral valve leaflet. Furthermore, there was a thrombus in the left auricular appendage despite sinus rhythm. These findings led to a diagnosis of suspected infectious endocarditis with subsequent multiple brain infarctions. The patient's general condition worsened and he died 13 days after admission. An autopsy was performed, and, while poorly differentiated cancer was observed in multiple organs, no primary tumor could be identified. Histological analysis showed that the masses of the mitral valve consisted mainly of fibrin without bacteria or oncocytes. This patient was therefore diagnosed with nonbacterial thrombotic endocarditis associated with cancer of unknown origin complicated with thrombus in the left auricular appendage

    A transit amplifying population underpins the efficient regenerative capacity of the testis

    Get PDF
    The spermatogonial stem cell (SSC) that supports spermatogenesis throughout adult life resides within the GFRα1-expressing A type undifferentiated spermatogonia. The decision to commit to spermatogenic differentiation coincides with the loss of GFRα1 and reciprocal gain of Ngn3 (Neurog3) expression. Through the analysis of the piRNA factor Miwi2 (Piwil4), we identify a novel population of Ngn3-expressing spermatogonia that are essential for efficient testicular regeneration after injury. Depletion of Miwi2-expressing cells results in a transient impact on testicular homeostasis, with this population behaving strictly as transit amplifying cells under homeostatic conditions. However, upon injury, Miwi2-expressing cells are essential for the efficient regenerative capacity of the testis, and also display facultative stem activity in transplantation assays. In summary, the mouse testis has adopted a regenerative strategy to expand stem cell activity by incorporating a transit-amplifying population to the effective stem cell pool, thus ensuring rapid and efficient tissue repair

    Search for high-mass resonances decaying to dilepton final states in pp collisions at s√=7 TeV with the ATLAS detector

    Get PDF
    The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to an electron-positron pair or a muon-antimuon pair. The search is sensitive to heavy neutral Z′ gauge bosons, Randall-Sundrum gravitons, Z * bosons, techni-mesons, Kaluza-Klein Z/γ bosons, and bosons predicted by Torsion models. Results are presented based on an analysis of pp collisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.9 fb−1 in the e + e − channel and 5.0 fb−1 in the μ + μ −channel. A Z ′ boson with Standard Model-like couplings is excluded at 95 % confidence level for masses below 2.22 TeV. A Randall-Sundrum graviton with coupling k/MPl=0.1 is excluded at 95 % confidence level for masses below 2.16 TeV. Limits on the other models are also presented, including Technicolor and Minimal Z′ Models

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore