2,266 research outputs found
Recommended from our members
The ErbB2ΔEx16 splice variant is a major oncogenic driver in breast cancer that promotes a pro-metastatic tumor microenvironment.
Amplification and overexpression of erbB2/neu proto-oncogene is observed in 20-30% human breast cancer and is inversely correlated with the survival of the patient. Despite this, somatic activating mutations within erbB2 in human breast cancers are rare. However, we have previously reported that a splice isoform of erbB2, containing an in-frame deletion of exon 16 (herein referred to as ErbB2ΔEx16), results in oncogenic activation of erbB2 because of constitutive dimerization of the ErbB2 receptor. Here, we demonstrate that the ErbB2ΔEx16 is a major oncogenic driver in breast cancer that constitutively signals from the cell surface. We further show that inducible expression of the ErbB2ΔEx16 variant in mammary gland of transgenic mice results in the rapid development of metastatic multifocal mammary tumors. Genetic and biochemical characterization of the ErbB2ΔEx16-derived mammary tumors exhibit several unique features that distinguish this model from the conventional ErbB2 ones expressing the erbB2 proto-oncogene in mammary epithelium. Unlike the wild-type ErbB2-derived tumors that express luminal keratins, ErbB2ΔEx16-derived tumors exhibit high degree of intratumoral heterogeneity co-expressing both basal and luminal keratins. Consistent with these distinct pathological features, the ErbB2ΔEx16 tumors exhibit distinct signaling and gene expression profiles that correlate with activation of number of key transcription factors implicated in breast cancer metastasis and cancer stem cell renewal
Novel Characteristics of Valveless Pumping
This study investigates the occurrence of valveless pumping in a fluidfilled system consisting of two open tanks connected by an elastic tube. We show that directional flow can be achieved by introducing a periodic pinching applied at an asymmetrical location along the tube, and that the flow direction depends on the pumping frequency. We propose a relation between wave propagation velocity, tube length, and resonance frequencies associated with shifts in the pumping direction using numerical simulations. The eigenfrequencies of the system are estimated from the linearized system, and we show that these eigenfrequencies constitute the resonance frequencies and the horizontal slope frequencies of the system; 'horizontal slope frequency' being a new concept. A simple model is suggested, explaining the effect of the gravity driven part of the oscillation observed in response to the tank and tube diameter changes. Results are partly compared with experimental findings.Art. no. 22450
Yukawa Textures From Heterotic Stability Walls
A holomorphic vector bundle on a Calabi-Yau threefold, X, with h^{1,1}(X)>1
can have regions of its Kahler cone where it is slope-stable, that is, where
the four-dimensional theory is N=1 supersymmetric, bounded by "walls of
stability". On these walls the bundle becomes poly-stable, decomposing into a
direct sum, and the low energy gauge group is enhanced by at least one
anomalous U(1) gauge factor. In this paper, we show that these additional
symmetries can strongly constrain the superpotential in the stable region,
leading to non-trivial textures of Yukawa interactions and restrictions on
allowed masses for vector-like pairs of matter multiplets. The Yukawa textures
exhibit a hierarchy; large couplings arise on the stability wall and some
suppressed interactions "grow back" off the wall, where the extended U(1)
symmetries are spontaneously broken. A number of explicit examples are
presented involving both one and two stability walls, with different
decompositions of the bundle structure group. A three family standard-like
model with no vector-like pairs is given as an example of a class of SU(4)
bundles that has a naturally heavy third quark/lepton family. Finally, we
present the complete set of Yukawa textures that can arise for any holomorphic
bundle with one stability wall where the structure group breaks into two
factors.Comment: 53 pages, 4 figures and 13 table
Self-Swabbing for Virological Confirmation of Influenza-Like Illness Among an Internet-Based Cohort in the UK During the 2014-2015 Flu Season: Pilot Study
BACKGROUND: Routine influenza surveillance, based on laboratory confirmation of viral infection, often fails to estimate the true burden of influenza-like illness (ILI) in the community because those with ILI often manage their own symptoms without visiting a health professional. Internet-based surveillance can complement this traditional surveillance by measuring symptoms and health behavior of a population with minimal time delay. Flusurvey, the UK's largest crowd-sourced platform for surveillance of influenza, collects routine data on more than 6000 voluntary participants and offers real-time estimates of ILI circulation. However, one criticism of this method of surveillance is that it is only able to assess ILI, rather than virologically confirmed influenza. OBJECTIVE: We designed a pilot study to see if it was feasible to ask individuals from the Flusurvey platform to perform a self-swabbing task and to assess whether they were able to collect samples with a suitable viral content to detect an influenza virus in the laboratory. METHODS: Virological swabbing kits were sent to pilot study participants, who then monitored their ILI symptoms over the influenza season (2014-2015) through the Flusurvey platform. If they reported ILI, they were asked to undertake self-swabbing and return the swabs to a Public Health England laboratory for multiplex respiratory virus polymerase chain reaction testing. RESULTS: A total of 700 swab kits were distributed at the start of the study; from these, 66 participants met the definition for ILI and were asked to return samples. In all, 51 samples were received in the laboratory, 18 of which tested positive for a viral cause of ILI (35%). CONCLUSIONS: This demonstrated proof of concept that it is possible to apply self-swabbing for virological laboratory testing to an online cohort study. This pilot does not have significant numbers to validate whether Flusurvey surveillance accurately reflects influenza infection in the community, but highlights that the methodology is feasible. Self-swabbing could be expanded to larger online surveillance activities, such as during the initial stages of a pandemic, to understand community transmission or to better assess interseasonal activity
Dynamic Perturbations of the T-Cell Receptor Repertoire in Chronic HIV Infection and following Antiretroviral Therapy
HIV infection profoundly affects many parameters of the immune system and ultimately leads to AIDS, yet which factors are most important for determining resistance, pathology, and response to antiretroviral treatment - and how best to monitor them - remain unclear. We develop a quantitative high-throughput sequencing pipeline to characterize the TCR repertoires of HIV-infected individuals before and after antiretroviral therapy, working from small, unfractionated samples of peripheral blood. This reveals the TCR repertoires of HIV(+) individuals to be highly perturbed, with considerably reduced diversity as a small proportion of sequences are highly overrepresented. HIV also causes specific qualitative changes to the repertoire including an altered distribution of V gene usage, depletion of public TCR sequences, and disruption of TCR networks. Short-term antiretroviral therapy has little impact on most of the global damage to repertoire structure, but is accompanied by rapid changes in the abundance of many individual TCR sequences, decreases in abundance of the most common sequences, and decreases in the majority of HIV-associated CDR3 sequences. Thus, high-throughput repertoire sequencing of small blood samples that are easy to take, store, and process can shed light on various aspects of the T-cell immune compartment and stands to offer insights into patient stratification and immune reconstitution
Stabilizing the Complex Structure in Heterotic Calabi-Yau Vacua
In this paper, we show that the presence of gauge fields in heterotic
Calabi-Yau compacitifications causes the stabilisation of some, or all, of the
complex structure moduli of the Calabi-Yau manifold while maintaining a
Minkowski vacuum. Certain deformations of the Calabi-Yau complex structure,
with all other moduli held fixed, can lead to the gauge bundle becoming
non-holomorphic and, hence, non-supersymmetric. This leads to an F-term
potential which stabilizes the corresponding complex structure moduli. We use
10- and 4-dimensional field theory arguments as well as a derivation based
purely on algebraic geometry to show that this picture is indeed correct. An
explicit example is presented in which a large subset of complex structure
moduli is fixed. We demonstrate that this type of theory can serve as the
hidden sector in heterotic vacua and can co-exist with realistic particle
physics.Comment: 17 pages, Late
Sudden Death and Left Ventricular Involvement in Arrhythmogenic Cardiomyopathy
BACKGROUND: Arrhythmogenic cardiomyopathy (ACM) is an inherited heart muscle disorder characterized by myocardial fibrofatty replacement and an increased risk of sudden cardiac death (SCD). Originally described as a right ventricular disease, ACM is increasingly recognized as a biventricular entity. We evaluated pathological, genetic, and clinical associations in a large SCD cohort. METHODS: We investigated 5205 consecutive cases of SCD referred to a national cardiac pathology center between 1994 and 2018. Hearts and tissue blocks were examined by expert cardiac pathologists. After comprehensive histological evaluation, 202 cases (4%) were diagnosed with ACM. Of these, 15 (7%) were diagnosed antemortem with dilated cardiomyopathy (n=8) or ACM (n=7). Previous symptoms, medical history, circumstances of death, and participation in competitive sport were recorded. Postmortem genetic testing was undertaken in 24 of 202 (12%). Rare genetic variants were classified according to American College of Medical Genetics and Genomics criteria. RESULTS: Of 202 ACM decedents (35.4±13.2 years; 82% male), no previous cardiac symptoms were reported in 157 (78%). Forty-one decedents (41/202; 20%) had been participants in competitive sport. The adjusted odds of dying during physical exertion were higher in men than in women (odds ratio, 4.58; 95% CI, 1.54-13.68; P=0.006) and in competitive athletes in comparison with nonathletes (odds ratio, 16.62; 95% CI, 5.39-51.24; P<0.001). None of the decedents with an antemortem diagnosis of dilated cardiomyopathy fulfilled definite 2010 Task Force criteria. The macroscopic appearance of the heart was normal in 40 of 202 (20%) cases. There was left ventricular histopathologic involvement in 176 of 202 (87%). Isolated right ventricular disease was seen in 13%, isolated left ventricular disease in 17%, and biventricular involvement in 70%. Among whole hearts, the most common areas of fibrofatty infiltration were the left ventricular posterobasal (68%) and anterolateral walls (58%). Postmortem genetic testing yielded pathogenic variants in ACM-related genes in 6 of 24 (25%) decedents. CONCLUSIONS: SCD attributable to ACM affects men predominantly, most commonly occurring during exertion in athletic individuals in the absence of previous reported cardiac symptoms. Left ventricular involvement is observed in the vast majority of SCD cases diagnosed with ACM at autopsy. Current Task Force criteria may fail to diagnose biventricular ACM before death
Spatial Clustering of Galaxies in Large Datasets
Datasets with tens of millions of galaxies present new challenges for the
analysis of spatial clustering. We have built a framework that integrates a
database of object catalogs, tools for creating masks of bad regions, and a
fast (NlogN) correlation code. This system has enabled unprecedented efficiency
in carrying out the analysis of galaxy clustering in the SDSS catalog. A
similar approach is used to compute the three-dimensional spatial clustering of
galaxies on very large scales. We describe our strategy to estimate the effect
of photometric errors using a database. We discuss our efforts as an early
example of data-intensive science. While it would have been possible to get
these results without the framework we describe, it will be infeasible to
perform these computations on the future huge datasets without using this
framework.Comment: original documents at
http://research.microsoft.com/scripts/pubs/view.asp?TR_ID=MSR-TR-2002-8
Triadin Knockout Syndrome Is Absent in a Multi-Center Molecular Autopsy Cohort of Sudden Infant Death Syndrome and Sudden Unexplained Death in the Young and Is Extremely Rare in the General Population
Background:
Triadin knockout syndrome (TKOS) is a potentially lethal arrhythmia disorder caused by recessively inherited null variants in TRDN-encoded cardiac triadin. Despite its malignant phenotype, the prevalence of TKOS in sudden infant death syndrome and sudden unexplained death in the young is unknown.
Methods:
Exome sequencing was performed on 599 sudden infant death syndrome and 258 sudden unexplained death in the young cases. Allele frequencies of all TRDN null variants identified in the cardiac-specific isoform of TRDN in the Genome Aggregation Database were used to determine the estimated prevalence and ethnic distribution of TKOS.
Results:
No triadin null individuals were identified in 599 sudden infant death syndrome and 258 sudden unexplained death in the young exomes. Using the Genome Aggregation Database, we estimate the overall prevalence of TKOS to be ≈1:22.7 million individuals. However, TKOS prevalence is 5.5-fold higher in those of African descent (≈1:4.1 million).
Conclusions:
TKOS is an exceedingly rare clinical entity that does not contribute meaningfully to either sudden infant death syndrome or sudden unexplained death in the young. However, despite its rarity and absence in large sudden death cohorts, TKOS remains a malignant and potentially lethal disorder which requires further research to better care for these patients
- …