18 research outputs found

    Repair, regenerative and supportive therapies of the annulus fibrosus: achievements and challenges

    Get PDF
    Lumbar discectomy is a very effective therapy for neurological decompression in patients suffering from sciatica due to hernia nuclei pulposus. However, high recurrence rates and persisting post-operative low back pain in these patients require serious attention. In the past decade, tissue engineering strategies have been developed mainly targeted to the regeneration of the nucleus pulposus (NP) of the intervertebral disc. Accompanying techniques that deal with the damaged annulus fibrous are now increasingly recognised as mandatory in order to prevent re-herniation to increase the potential of NP repair and to confine NP replacement therapies. In the current review, the requirements, achievements and challenges in this quickly emerging field of research are discussed

    Double approach in thoraco-lumbar malunions

    No full text
    Thoracolumbar fractures (T11–L2) complicated by malunion often need surgery. In our hands two approaches are necessary for release and fusion. Correction is obtained by posterior bending in situ of a screw rod fixation. When the deformity is flexible, first we perform a posterior reduction and stabilization, and secondly an anterior approach for interbody fusion. When spine is rigid an anterior release with waiting bone graft is performed first followed by a second posterior reduction and stabilization. This strategy allows a real correction without the loss of correction in time. This technique is fast and safe as demonstrated in our series of 20 patients

    The structural basis of interlamellar cohesion in the intervertebral disc wall

    No full text
    The purpose of this study was to investigate the structural mechanisms that create cohesion between the concentric lamellae comprising the disc annulus. Sections, 50–60 µm thick, were obtained using a carefully chosen cutting plane that incorporated the fibrous component in alternating lamellae as in-plane and cross-sectioned arrays. These sections were then subjected to microtensile stretching both across (radial) and along (tangential) the in-plane fibre direction, in their fully hydrated state. Structural responses were studied by simultaneously viewing the sections using high-resolution Nomarski interference contrast light microscopy. Additional bulk samples of annulus were fixed while held in a constant, radially stretched state in order to investigate the potential for interlamellar separation to occur in a state more representative of the intact disc wall. The study has provided a detailed picture of the structural architecture creating disc wall cohesion, revealing a complex hierarchy of interconnecting relationships within the disc wall, not previously described. Importantly, because our experimental approach offers a high-resolution view of the response of the interlamellar junction to deformation in its fully hydrated condition, it is a potentially useful method for investigating subtle changes in junction cohesion resulting from both early degeneration and whole-disc trauma

    Bovine and degenerated human annulus fibrosus: a microstructural and micromechanical comparison.

    Get PDF
    The complex structure of the annulus fibrosus is strongly related to its mechanical properties. Recent work showed that it is possible to observe the relative movement of fibre bundles in loaded cow tail annulus; the aim of this work was to describe and quantify annulus fibrosus micromechanics in degenerated human disc, and compare it with cow tail annulus, an animal model often used in the literature. Second harmonic generation was used to image the collagen matrix in twenty strips of annulus fibrosus harvested from intervertebral disc of seven patients undergoing surgery. Samples were loaded to 6% tensile strain in 1% steps. Elastic modulus was calculated from loading curves, and micromechanical strains were calculated from the images using custom software. The same protocol was applied to twenty strips of annulus harvested from cow tail discs. Significant morphological differences were found between human and cow tail samples, the most striking being the lack of collagen fibre crimp in the former. Fibres were also observed bending and running from one lamella to the other, forming a strong flexible interface. Interdigitation of fibre bundles was also present at this interface. Quantitative results show complex patterns of inter-bundle and inter-lamellar behaviour, with inter-bundle sliding being the main strain mechanism. Elastic modulus was similar between species, and it was not affected by the degree of degeneration. This work gives an insight into the complex structure and mechanical function of the annulus fibrosus, which should be accounted for in disc numerical modelling.Accepted manuscript - 12 month embarg
    corecore