18 research outputs found

    Force measurement platform for training and assessment of laparoscopic skills

    Get PDF
    Background - To improve endoscopic surgical skills, an increasing number of surgical residents practice on box or virtual-reality (VR) trainers. Current training is mainly focused on hand–eye coordination. Training methods that focus on applying the right amount of force are not yet available. Methods - The aim of this project is to develop a system to measure forces and torques during laparoscopic training tasks as well as the development of force parameters that assess tissue manipulation tasks. The force and torque measurement range of the developed force platform are 0–4 N and 1 Nm (torque), respectively. To show the potential of the developed force platform, a pilot study was conducted in which five surgeons experienced in intracorporeal suturing and five novices performed a suture task in a box trainer. Results - During the pilot study, the maximum and mean absolute nonzero force that the novice used were 4.7 N (SD 1.3 N) and 2.1 N (SD 0.6 N), respectively. With a maximum force of 2.6 N (SD 0.4 N) and mean nonzero force of 0.9 N (SD 0.3 N), the force exerted by the experts was significantly lower.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    PID-controlled laparoscopic appendectomy device

    Get PDF
    Minimally invasive surgery is a surgical method, which boasts many advantages over regular surgeries, such as decreasing the risks involved by mini-mizing the incision area, thus reducing the risk of infection compared to invasive surgeries. Laparoscopic surgery tools built for this purpose are mostly singular in function, which means that it requires multiple incisions for multiple tools or changing tools using the same incision during the operation. This project attempts to motorize an affordable multifunctional mechanical surgical tool prototype. The tool is designed using SolidWorks and controlled using MATLAB/Simulink. Three motors are used to motorize the multifunctional laparoscopic tool and their control architectures made it more precise and more accurate for noninvasive op-erations. It is shown that with some physical modifications and simple PID con-trol, the multifunctional laparoscopy tool can be controlled and modified for the robotic-assisted surgery. Possible future improvements include attachment of the cameras and wireless control for the tele-operational applications

    The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review

    Get PDF
    BACKGROUND: Virtual reality (VR) as surgical training tool has become a state-of-the-art technique in training and teaching skills for minimally invasive surgery (MIS). Although intuitively appealing, the true benefits of haptic (VR training) platforms are unknown. Many questions about haptic feedback in the different areas of surgical skills (training) need to be answered before adding costly haptic feedback in VR simulation for MIS training. This study was designed to review the current status and value of haptic feedback in conventional and robot-assisted MIS and training by using virtual reality simulation. METHODS: A systematic review of the literature was undertaken using PubMed and MEDLINE. The following search terms were used: Haptic feedback OR Haptics OR Force feedback AND/OR Minimal Invasive Surgery AND/OR Minimal Access Surgery AND/OR Robotics AND/OR Robotic Surgery AND/OR Endoscopic Surgery AND/OR Virtual Reality AND/OR Simulation OR Surgical Training/Education. RESULTS: The results were assessed according to level of evidence as reflected by the Oxford Centre of Evidence-based Medicine Levels of Evidence. CONCLUSIONS: In the current literature, no firm consensus exists on the importance of haptic feedback in performing minimally invasive surgery. Although the majority of the results show positive assessment of the benefits of force feedback, results are ambivalent and not unanimous on the subject. Benefits are least disputed when related to surgery using robotics, because there is no haptic feedback in currently used robotics. The addition of haptics is believed to reduce surgical errors resulting from a lack of it, especially in knot tying. Little research has been performed in the area of robot-assisted endoscopic surgical training, but results seem promising. Concerning VR training, results indicate that haptic feedback is important during the early phase of psychomotor skill acquisitio

    The Effects of Force Feedback on Surgical Task Performance: A Meta-Analytical Integration

    No full text
    Since the introduction of surgical robots into clinical practice, there has been a lively debate about the potential benefits and the need to implement haptic feedback for the surgeon. In the current article, a quantitative review of empirical findings from 21 studies (N = 332 subjects) is provided. Using meta-analytical methods, we found moderate effects on task accuracy (g = .61), large effect sizes of additional force feedback on average forces (g = .82) and peak forces (g = 1.09) and no effect on task completion times (g = -.05) when performing surgical tasks. Moreover, the magnitude of the force feedback effect was attenuated when visual depth information was available
    corecore