1,519 research outputs found

    Systemic banking crises

    Get PDF
    Systemic banking crises can have devastating effects on the economies of developing or industrialized countries. This Policy Discussion Paper reviews the factors that weaken banking systems and make them more susceptible to crises.Financial crises ; Bank failures

    Industrial loan companies

    Get PDF
    Once Wal-Mart announced its intention to acquire an industrial loan company, a public furor arose that has brought a lot of attention to a type of institution that has existed for quite some time, but was not widely recognized outside of banking circles. What are ILCs and why have they become so controversial lately?Industrial loan associations

    Capacity of Compound MIMO Gaussian Channels with Additive Uncertainty

    Full text link
    This paper considers reliable communications over a multiple-input multiple-output (MIMO) Gaussian channel, where the channel matrix is within a bounded channel uncertainty region around a nominal channel matrix, i.e., an instance of the compound MIMO Gaussian channel. We study the optimal transmit covariance matrix design to achieve the capacity of compound MIMO Gaussian channels, where the channel uncertainty region is characterized by the spectral norm. This design problem is a challenging non-convex optimization problem. However, in this paper, we reveal that this problem has a hidden convexity property, which can be exploited to map the problem into a convex optimization problem. We first prove that the optimal transmit design is to diagonalize the nominal channel, and then show that the duality gap between the capacity of the compound MIMO Gaussian channel and the min-max channel capacity is zero, which proves the conjecture of Loyka and Charalambous (IEEE Trans. Inf. Theory, vol. 58, no. 4, pp. 2048-2063, 2012). The key tools for showing these results are a new matrix determinant inequality and some unitarily invariant properties.Comment: 8 pages, submitted to IEEE Transactions on Information Theor

    Engineering nonlinear response of nanomaterials using Fano resonances

    Full text link
    We show that, nonlinear optical processes of nanoparticles can be controlled by the presence of interactions with a molecule or a quantum dot. By choosing the appropriate level spacing for the quantum emitter, one can either suppress or enhance the nonlinear frequency conversion. We reveal the underlying mechanism for this effect, which is already observed in recent experiments: (i) Suppression occurs simply because transparency induced by Fano resonance does not allow an excitation at the converted frequency. (ii) Enhancement emerges since nonlinear process can be brought to resonance. Path interference effect cancels the nonresonant frequency terms. We demonstrate the underlying physics using a simplified model, and we show that the predictions of the model are in good agreement with the 3-dimensional boundary element method (MNPBEM toolbox) simulations. Here, we consider the second harmonic generation in a plasmonic converter as an example to demonstrate the control mechanism. The phenomenon is the semi-classical analog of nonlinearity enhancement via electromagnetically induced transparency.Comment: 10 pages, 6 figure

    Efficient Beam Alignment in Millimeter Wave Systems Using Contextual Bandits

    Full text link
    In this paper, we investigate the problem of beam alignment in millimeter wave (mmWave) systems, and design an optimal algorithm to reduce the overhead. Specifically, due to directional communications, the transmitter and receiver beams need to be aligned, which incurs high delay overhead since without a priori knowledge of the transmitter/receiver location, the search space spans the entire angular domain. This is further exacerbated under dynamic conditions (e.g., moving vehicles) where the access to the base station (access point) is highly dynamic with intermittent on-off periods, requiring more frequent beam alignment and signal training. To mitigate this issue, we consider an online stochastic optimization formulation where the goal is to maximize the directivity gain (i.e., received energy) of the beam alignment policy within a time period. We exploit the inherent correlation and unimodality properties of the model, and demonstrate that contextual information improves the performance. To this end, we propose an equivalent structured Multi-Armed Bandit model to optimally exploit the exploration-exploitation tradeoff. In contrast to the classical MAB models, the contextual information makes the lower bound on regret (i.e., performance loss compared with an oracle policy) independent of the number of beams. This is a crucial property since the number of all combinations of beam patterns can be large in transceiver antenna arrays, especially in massive MIMO systems. We further provide an asymptotically optimal beam alignment algorithm, and investigate its performance via simulations.Comment: To Appear in IEEE INFOCOM 2018. arXiv admin note: text overlap with arXiv:1611.05724 by other author

    Scheduling of Multicast and Unicast Services under Limited Feedback by using Rateless Codes

    Full text link
    Many opportunistic scheduling techniques are impractical because they require accurate channel state information (CSI) at the transmitter. In this paper, we investigate the scheduling of unicast and multicast services in a downlink network with a very limited amount of feedback information. Specifically, unicast users send imperfect (or no) CSI and infrequent acknowledgements (ACKs) to a base station, and multicast users only report infrequent ACKs to avoid feedback implosion. We consider the use of physical-layer rateless codes, which not only combats channel uncertainty, but also reduces the overhead of ACK feedback. A joint scheduling and power allocation scheme is developed to realize multiuser diversity gain for unicast service and multicast gain for multicast service. We prove that our scheme achieves a near-optimal throughput region. Our simulation results show that our scheme significantly improves the network throughput over schemes employing fixed-rate codes or using only unicast communications
    corecore