15 research outputs found

    Successful treatment of metastatic melanoma by adoptive transfer of blood-derived polyclonal tumor-specific CD4+ and CD8+ T cells in combination with low-dose interferon-alpha

    Get PDF
    A phase I/II study was conducted to test the feasibility and safety of the adoptive transfer of tumor-reactive T cells and daily injections of interferon-alpha (IFNα) in metastatic melanoma patients with progressive disease. Autologous melanoma cell lines were established to generate tumor-specific T cells by autologous mixed lymphocyte tumor cell cultures using peripheral blood lymphocytes. Ten patients were treated with on average 259 (range 38–474) million T cells per infusion to a maximum of six infusions, and clinical response was evaluated according to the response evaluation criteria in solid tumors (RECIST). Five patients showed clinical benefit from this treatment, including one complete regression, one partial response, and three patients with stable disease. No treatment-related serious adverse events were observed, except for the appearance of necrotic-like fingertips in one patient. An IFNα-related transient leucopenia was detected in 6 patients, including all responders. One responding patient displayed vitiligo. The infused T-cell batches consisted of tumor-reactive polyclonal CD8+ and/or CD4+ T cells. Clinical reactivity correlated with the functional properties of the infused tumor-specific T cells, including their in vitro expansion rate and the secretion of mainly Th1 cytokines as opposed to Th2 cytokines. Our study shows that relatively low doses of T cells and low-dose IFNα can lead to successful treatment of metastatic melanoma and reveals a number of parameters potentially associated with this success

    Immunotherapy of a human papillomavirus (HPV) type 16 E7-expressing tumour by administration of fusion protein comprising Mycobacterium bovis bacille Calmette–Guérin (BCG) hsp65 and HPV16 E7

    No full text
    Human papillomavirus type 16 (HPV16) infection has been linked to the development of cervical and anal dysplasia and cancer. One hallmark of persistent infection is the synthesis of the viral E7 protein in cervical epithelial cells. The expression of E7 in dysplastic and transformed cells and its recognition by the immune system as a foreign antigen make it an ideal target for immunotherapy. Utilizing the E7-expressing murine tumour cell line, TC-1, as a model of cervical carcinoma, an immunotherapy based on the administration of an adjuvant-free fusion protein comprising Mycobacterium bovis BCG heat shock protein (hsp)65 linked to HPV16 E7 (hspE7) has been developed. The data show that prophylactic immunization with hspE7 protects mice against challenge with TC-1 cells and that these tumour-free animals are also protected against re-challenge with TC-1 cells. In addition, therapeutic immunization with hspE7 induces regression of palpable tumours, confers protection against tumour re-challenge and is associated with long-term survival (> 253 days). In vitro analyses indicated that immunization with hspE7 leads to the induction of a Th1-like cell-mediated immune response based on the pattern of secreted cytokines and the presence of cytolytic activity following antigenic recall. In vivo studies using mice with targeted mutations in CD8 or MHC class II or depleted of CD8 or CD4 lymphocyte subsets demonstrate that tumour regression following therapeutic hspE7 immunization is CD8-dependent and CD4-independent. These studies extend previous observations on the induction of cytotoxic T lymphocytes by hsp fusion proteins and are consistent with the clinical application of hspE7 as an immunotherapy for human cervical and anal dysplasia and cancer
    corecore