97 research outputs found

    HPV genotypes in the oral cavity/oropharynx of children and adolescents: cross-sectional survey in Poland

    Get PDF
    Human papillomaviruses (HPVs) are a very complex group of pathogenic viruses, with more than 80 types, causing human infection. Given the prevalence of HPV infection and its relationship with the development of cervical and many other cancers, HPV vaccine development has been a major public health initiative worldwide in the last decade. The aim of the presented study was to identify HPV DNA by MY-PCR in 4,150 school children and adolescents, aged 10–18 years in the Wielkopolska region, Poland. All individuals were asked to fill in extensive questionnaires; further normal, oral squamous cells were collected from each pupil. Cellular DNA was isolated and used as a MY-PCR template to estimate the incidence of HPV-active infection. Forty five subjects (1.08% of the sample) were carriers of oropharyngeal HPVs. HPV status and variables of interest, such as age, gender, socioeconomical status, and risk factors (smoking and sexual intercourse history, alcohol consumption) were not correlated. The presence of HPVs in the oral cavity was cumulated in several schools of the region. DNA sequencing of MY-PCR products revealed only four HPV genotypes. The most frequent genotype was HPV11 (38/45 HPV-positive cases), while other more rare genotypes were HPV6 (3/45), HPV12 (3/45), and HPV57 (1/45). Conclusion: Our findings presented herein, reveal a relatively low prevalance of oropharyngeal HPVs in Polish adolescents and fill an important gap in the knowledge of oral HPV infections of children above 10 years and adolescents

    Global epidemiology of hip fractures: a study protocol using a common analytical platform among multiple countries

    Get PDF
    INTRODUCTION: Hip fractures are associated with a high burden of morbidity and mortality. Globally, there is wide variation in the incidence of hip fracture in people aged 50 years and older. Longitudinal and cross-geographical comparisons of health data can provide insights on aetiology, risk factors, and healthcare practices. However, systematic reviews of studies that use different methods and study periods do not permit direct comparison across geographical regions. Thus, the objective of this study is to investigate global secular trends in hip fracture incidence, mortality and use of postfracture pharmacological treatment across Asia, Oceania, North and South America, and Western and Northern Europe using a unified methodology applied to health records. METHODS AND ANALYSIS: This retrospective cohort study will use a common protocol and an analytical common data model approach to examine incidence of hip fracture across population-based databases in different geographical regions and healthcare settings. The study period will be from 2005 to 2018 subject to data availability in study sites. Patients aged 50 years and older and hospitalised due to hip fracture during the study period will be included. The primary outcome will be expressed as the annual incidence of hip fracture. Secondary outcomes will be the pharmacological treatment rate and mortality within 12 months following initial hip fracture by year. For the primary outcome, crude and standardised incidence of hip fracture will be reported. Linear regression will be used to test for time trends in the annual incidence. For secondary outcomes, the crude mortality and standardised mortality incidence will be reported. ETHICS AND DISSEMINATION: Each participating site will follow the relevant local ethics and regulatory frameworks for study approval. The results of the study will be submitted for peer-reviewed scientific publications and presented at scientific conferences

    A computational procedure for functional characterization of potential marker genes from molecular data: Alzheimer's as a case study

    Get PDF
    Abstract Background A molecular characterization of Alzheimer's Disease (AD) is the key to the identification of altered gene sets that lead to AD progression. We rely on the assumption that candidate marker genes for a given disease belong to specific pathogenic pathways, and we aim at unveiling those pathways stable across tissues, treatments and measurement systems. In this context, we analyzed three heterogeneous datasets, two microarray gene expression sets and one protein abundance set, applying a recently proposed feature selection method based on regularization. Results For each dataset we identified a signature that was successively evaluated both from the computational and functional characterization viewpoints, estimating the classification error and retrieving the most relevant biological knowledge from different repositories. Each signature includes genes already known to be related to AD and genes that are likely to be involved in the pathogenesis or in the disease progression. The integrated analysis revealed a meaningful overlap at the functional level. Conclusions The identification of three gene signatures showing a relevant overlap of pathways and ontologies, increases the likelihood of finding potential marker genes for AD.</p

    Neonatal Handling Affects Durably Bonding and Social Development

    Get PDF
    The neonatal period in humans and in most mammals is characterized by intense mother-young interactions favoring pair bonding and the adaptation of neonates to their new environment. However, in many post-delivery procedures, human babies commonly experience combined maternal separation and intense handling for about one hour post-birth. Currently, the effects of such disturbances on later attachment and on the development of newborns are still debated: clearly, further investigations are required. As animals present good models for controlled experimentation, we chose domestic horses to investigate this issue. Horses, like humans, are characterized by single births, long lactating periods and selective mother-infant bonds. Routine postnatal procedures for foals, as for human babies, also involve intense handling and maternal separation. In the present study, we monitored the behavior of foals from early stages of development to “adolescence”, in a normal ecological context (social groups with adults and peers). Experimental foals, separated from their mothers and handled for only 1 hour post-birth, were compared to control foals, left undisturbed after birth. Our results revealed short- and long-term effects of this unique neonatal experience on attachment and subsequent social competences. Thus, experimental foals presented patterns of insecure attachment to their mothers (strong dependence on their mothers, little play) and impaired social competences (social withdrawal, aggressiveness) at all ages. We discuss these results in terms of mother-young interactions, timing of interactions and relationships between bonding and subsequent social competences. Our results indicate that this ungulate species could become an interesting animal model. To our knowledge, this is the first clear demonstration that intervention just after birth affects bonding and subsequent social competences (at least until “adolescence”). It opens new research directions for studies on both humans and other animals

    Mapping and simulating systematics due to spatially-varying observing conditions in DES Science Verification data

    Get PDF
    Spatially-varying depth and characteristics of observing conditions, such as seeing, airmass, or sky background, are major sources of systematic uncertainties in modern galaxy survey analyses, in particular in deep multi-epoch surveys. We present a framework to extract and project these sources of systematics onto the sky, and apply it to the Dark Energy Survey (DES) to map the observing conditions of the Science Verification (SV) data. The resulting distributions and maps of sources of systematics are used in several analyses of DES SV to perform detailed null tests with the data, and also to incorporate systematics in survey simulations. We illustrate the complementarity of these two approaches by comparing the SV data with the BCC-UFig, a synthetic sky catalogue generated by forward-modelling of the DES SV images. We analyse the BCC-UFig simulation to construct galaxy samples mimicking those used in SV galaxy clustering studies. We show that the spatially-varying survey depth imprinted in the observed galaxy densities and the redshift distributions of the SV data are successfully reproduced by the simulation and well-captured by the maps of observing conditions. The combined use of the maps, the SV data and the BCC-UFig simulation allows us to quantify the impact of spatial systematics on N(z)N(z), the redshift distributions inferred using photometric redshifts. We conclude that spatial systematics in the SV data are mainly due to seeing fluctuations and are under control in current clustering and weak lensing analyses. The framework presented here is relevant to all multi-epoch surveys, and will be essential for exploiting future surveys such as the Large Synoptic Survey Telescope (LSST), which will require detailed null-tests and realistic end-to-end image simulations to correctly interpret the deep, high-cadence observations of the sky

    Dark energy survey year 3 results: Photometric data set for cosmology

    Get PDF
    We describe the Dark Energy Survey (DES) photometric data set assembled from the first three years of science operations to support DES Year 3 cosmologic analyses, and provide usage notes aimed at the broad astrophysics community. Y3 GOLD improves on previous releases from DES, Y1 GOLD, and Data Release 1 (DES DR1), presenting an expanded and curated data set that incorporates algorithmic developments in image detrending and processing, photometric calibration, and object classification. Y3 GOLD comprises nearly 5000 deg of grizY imaging in the south Galactic cap, including nearly 390 million objects, with depth reaching a signal-to-noise ratio ∼10 for extended objects up to i ∼ 23.0, and top-of-the-atmosphere photometric uniformity 98% and purity >99% for galaxies with 19 < i < 22.5. Additionally, it includes per-object quality information, and accompanying maps of the footprint coverage, masked regions, imaging depth, survey conditions, and astrophysical foregrounds that are used to select the cosmologic analysis samples. 2 AB A

    Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data

    Get PDF
    Shear peak statistics has gained a lot of attention recently as a practical alternative to the two point statistics for constraining cosmological parameters. We perform a shear peak statistics analysis of the Dark Energy Survey (DES) Science Verification (SV) data, using weak gravitational lensing measurements from a 139 deg2^2 field. We measure the abundance of peaks identified in aperture mass maps, as a function of their signal-to-noise ratio, in the signal-to-noise range 0404 would require significant corrections, which is why we do not include them in our analysis. We compare our results to the cosmological constraints from the two point analysis on the SV field and find them to be in good agreement in both the central value and its uncertainty. We discuss prospects for future peak statistics analysis with upcoming DES data

    The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. I. discovery of the optical counterpart using the Dark Energy Camera

    Get PDF
    We present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star merger detected through gravitational-wave emission, GW170817. Our observations commenced 10.5 hr post-merger, as soon as the localization region became accessible from Chile. We imaged 70 deg2 in the i and z bands, covering 93% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts (e.g., a kilonova). At 11.4 hr post-merger we detected a bright optical transient located 10.6 from the nucleus of NGC 4993 at redshift z=0.0098, consistent (for H0 = 70 km s−1 Mpc−1) with the distance of 40±8 Mpc reported by the LIGO Scientific Collaboration and the Virgo Collaboration (LVC). At detection the transient had magnitudes of i = 17.3 and z = 17.4, and thus an absolute magnitude of Mi = -15.7, in the luminosity range expected for a kilonova. We identified 1500 potential transient candidates. Applying simple selection criteria aimed at rejecting background events such as supernovae, we find the transient associated with NGC 4993 as the only remaining plausible counterpart, and reject chance coincidence at the 99.5% confidence level. We therefore conclude that the optical counterpart we have identified near NGC 4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves and demonstrates the power of DECam to identify the optical counterparts of gravitational-wave sources

    Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)

    Get PDF
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands

    Dark Energy Survey Year 1 results: Curved-sky weak lensing mass map

    Get PDF
    We construct the largest curved-sky galaxy weak lensing mass map to date from the DES firstyear (DES Y1) data. The map, about 10 times larger than the previous work, is constructed over a contiguous ≈1500 deg 2 , covering a comoving volume of ≈10 Gpc 3 . The effects of masking, sampling, and noise are tested using simulations. We generate weak lensing maps from two DES Y1 shear catalogues, METACALIBRATION and IM3SHAPE, with sources at redshift 0.2 < z < 1.3, and in each of four bins in this range. In the highest signal-to-noise map, the ratio between the mean signal to noise in the E-mode map and the B-mode map is ~1.5 (~2) when smoothed with a Gaussian filter of sG = 30 (80) arcmin. The second and third moments of the convergence κ in the maps are in agreement with simulations. We also find no significant correlation of κ with maps of potential systematic contaminants. Finally, we demonstrate two applications of the mass maps: (1) cross-correlation with different foreground tracers of mass and (2) exploration of the largest peaks and voids in the maps
    corecore