64 research outputs found
Clinical Pharmacokinetics and Dose Recommendations for Posaconazole in Infants and Children.
OBJECTIVES: The objectives of this study were to investigate the population pharmacokinetics of posaconazole in immunocompromised children, evaluate the influence of patient characteristics on posaconazole exposure and perform simulations to recommend optimal starting doses. METHODS: Posaconazole plasma concentrations from paediatric patients undergoing therapeutic drug monitoring were extracted from a tertiary paediatric hospital database. These were merged with covariates collected from electronic sources and case-note reviews. An allometrically scaled population-pharmacokinetic model was developed to investigate the effect of tablet and suspension relative bioavailability, nonlinear bioavailability of suspension, followed by a step-wise covariate model building exercise to identify other important sources of variability. RESULTS: A total of 338 posaconazole plasma concentrations samples were taken from 117 children aged 5 months to 18 years. A one-compartment model was used, with tablet apparent clearance standardised to a 70-kg individual of 15 L/h. Suspension was found to have decreasing bioavailability with increasing dose; the estimated suspension dose to yield half the tablet bioavailability was 99 mg/m2. Diarrhoea and proton pump inhibitors were also associated with reduced suspension bioavailability. CONCLUSIONS: In the largest population-pharmacokinetic study to date in children, we have found similar covariate effects to those seen in adults, but low bioavailability of suspension in patients with diarrhoea or those taking concurrent proton pump inhibitors, which may in particular limit the use of posaconazole in these patients
Tanezumab: a selective humanized mAb for chronic lower back pain
Michael P Webb,1 Erik M Helander,2 Bethany L Menard,2 Richard D Urman,3 Alan D Kaye2 1Department of Anesthesiology, North Shore Hospital, Auckland, New Zealand; 2Department of Anesthesiology, LSU School of Medicine, New Orleans, LA, USA; 3Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA Abstract: Chronic lower back pain is a significant disease that affects nearly 20% of the worldwide population. Along with hindering patients’ quality of life, chronic lower back pain is considered to be the second most common cause of disability among Americans. Treating chronic lower back pain is often a challenge for providers, especially in light of our current opioid epidemic. With this epidemic and an increased aging population, there is an imminent need for development of new pharmacologic therapeutic options, which are not only effective but also pose minimal adverse effects to the patient. With these considerations, a novel therapeutic agent called tanezumab has been developed and studied. Tanezumab is a humanized monoclonal immunoglobulin G2 antibody that works by inhibiting the binding of NGF to its receptors. NGF is involved in the function of sensory neurons and fibers involved in nociceptive transduction. It is commonly seen in excess in inflammatory joint conditions and in chronic pain patients. Nociceptors are dependent on NGF for growth and ongoing function. The inhibition of NGF binding to its receptors is a mechanism by which pain pathways can be interrupted. In this article, a number of recent randomized controlled trials are examined relating to the efficacy and safety of tanezumab in the treatment of chronic lower back pain. Although tanezumab was shown to be an effective pain modulator in major trials, several adverse effects were seen among different doses of the medication, one of which led to a clinical hold placed by the US Food and Drug Administration. In summary, tanezumab is a promising agent that warrants further investigation into its analgesic properties and safety profile. Keywords: tanezumab, monoclonal antibody, chronic lower back pain, neurotrophin nerve growth factor (NGF), tropomyosin receptor A (TrkA), treatment 
Global Solutions and Time Decay of the Non-cutoff Vlasov–Maxwell–Boltzmann System in the Whole Space
- …